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ABSTRACT

‘We present a memory-based model for melodic segmentation based
on the notion of melodic density. The model emphasises the role
of short-term memory and time in music listening, by modelling
the effects of recency in the perception of boundaries. We de-
scribe the model in detail and compare it with Cambouropoulos’
Local Boundary Detection Model for a series of melody examples.
First results indicate that this new model is more conservative, as
it generates fewer total boundaries but preserves most boundaries
that coincide with the limits of recurring patterns.

1. INTRODUCTION

It is known that listeners identify segmentation boundaries when
abstracting musical contents. The ability to partition a melody in
several segments provides a structural description of the piece of
music. Thus, segmentation can be seen as a pre-processing stage
for other tasks such as pattern discovery or music search.

Pattern finding algorithms, in particular, are known to be com-
putationally expensive, and therefore can benefit from a reduction
of the initial search space. A low-level segmentation can provide
an efficiency gain by pre-processing a melodic sequence, and gen-
erating an initial set of boundaries which may be used as markers
for pattern search [1]. One such method is The Local Boundary
Detection Model (LBDM) [2], a segmentation model that identi-
fies discontinuities in a melodic surface based on Gestalt principles
of perception. The LBDM is an essential reference amongst seg-
mentation algorithms, mostly due to its simplicity and generality
[3, 2]. As the author emphasises, the LBDM is not a complete
model of grouping in itself, as it relies on complementary mod-
els (i.e. pattern similarity) to select the most relevant boundaries.
Although in that context this may not be considered a weakness
of the model, excessive boundary generation may become a dis-
advantage if we intend to use the LBDM in isolation, and when
segmentation is to be used as a reliable data reduction technique.

The LBDM has a fairly short memory as it considers at most
4 consecutive events at a time. As a consequence, there is limited
interaction between neighboring boundaries and sometimes small
“oscillations” can be identified as salient boundaries. This type
of limitation has also been referred to by Lerdahl & Jackendoff in
their Generative Theory of Tonal Music [4].

Research on auditory perception and memory has underlined
the influence of time in the perception of differences and in the
establishment of temporal relations in sequential processes. Stud-
ies have shown that listeners retain auditory information for some
time, even after the end of stimulation [5]. This means that several
past (although relatively recent) stimuli may draw the listener’s at-
tention, and may be retained as the actual most recent and promi-
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nent stimuli. Some researches have suggested that listeners per-
ceive a musical surface by focusing on successive zones, that can
be viewed as a “sliding window” along the musical piece [6]. The
size of this window (determined by short-term memory restric-
tions) should limit the amount of musical material that can be
looked back on when processing a melodic sequence. Within this
time window, recency effects are likely to apply, as documented in
[7, 8].

2. THE LBDM

The LBDM calculates a boundary profile for a melody, using Gestalt-
based identity—change and proximity—difference rules, applied to
several parameters describing a melody. The refined version of this
algorithm [2] takes as input a melodic sequence converted into sev-
eral independent parametric interval profiles Py, = [z1, T2, ...Tn]
where k € {pitch,ioi,rest},z; > 0and ¢ € {1,2,..n}. A
Change rule assigns boundaries to intervals with strength propor-
tional to the degree of change between neighboring consecutive
interval pairs. Then a Prozimity rule scales the previous bound-
aries proportionally to the size of the intervals.

The strength of the boundaries at each interval x; is given by
the following,

si =z X (Ti—1,s + Ti,it1) (N

where

Tiit1l = { % it i1 £ OA T, Tig1 20
0 T; =Tiy1 =0

For each parameter k a sequence sy is calculated, then all se-
quences are normalised and combined in a weighted sum to give
the overall boundary strength profile. The suggested weights for
the 3 different parameters are Wpstch = Wrest = 0.25 and wio; =
0.5 (see [9] for an overview on the behavior of the LBDM with dif-
ferent parameter tunings). The local peaks in the resulting bound-
ary profile indicate local boundaries in the melodic sequence. A
threshold must be defined a priori, above which, a peak is identi-
fied as a boundary. For additional details on the implementation of
the LBDM the reader is referred to [2].

3. MELODIC DENSITY SEGMENTATION MODEL

We now describe a new model for melodic segmentation which
identifies segmentation boundaries as perceived changes in melodic
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Table 1: Order and recency of pitch intervals for a sequence of
events. Intervals are in semitones.
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density. We will designate this model as Melodic Density Segmen-
tation Model (MDSM). In contrast with the LBDM, that measures
the accumulated boundary strength and identifies local maxima,
the MDSM calculates the accumulated melodic cohesion between
pitch intervals, and then identifies local minima (i.e. points of
low melodic density) as local boundaries. This new segmenta-
tion method also incorporates a short-term memory window and
models the effects of recency with an attenuation function.

Before a formal description of the model is presented, some of
its characteristics and underlying assumptions must be explained.

It is conjectured that pitch intervals may be formed (and per-
ceived) between all notes occurring over an interval of time (short
term memory window) and not just between consecutive notes. In
Table 1 a short sequence of 4 midi notes is depicted together with
the pitch distances between all pairs of events. The order of an
interval determines the distance between the present and previous
event considered. Thus, an interval of order k£ with respect to a
given event e; is denoted by (e;—k,e;). For example, from ta-
ble 1 intervals (e;—1, e;) and (e;—2, e;—1) have order 1, intervals
(ei—2,e;) and (e;—3, e;—1) have order 2, etc...

Recency effects apply in two different ways. The higher the
order of an interval, the greater the temporal separation between
the events, and therefore the weaker the perceived link between
the two. On the other hand, more recently formed intervals have a
stronger contribution to the melodic cohesion of the sequence than
earlier formed ones. The recency of an interval with respect to an
event e; is given by the time that separates e; and the latest event
of the two that constitute the interval. These two factors are com-
bined to determine the overall contribution of each interval at any
given moment in time. In Table 1, recency is indicated in the bot-
tom row. Increasing values of recency express less recent intervals.
Let’s consider here for simplicity, that all events in the previous
example have equidistant on-set times and equal duration. Then
intervals (ej—2,e;) and (e;—2, e;—1) will have equivalent contri-
bution, since the former is an interval of order 2 (meaning that
events are separated by 2 duration units) but with recency 0, and
the latter has order 1 but recency 1 (meaning that the interval is
separated from the reference event e; by 1 duration unit).

The melodic cohesion of an interval is defined here to be pro-
portional to the frequency of occurrence of that interval in the
interval framework associated with the melody being analysed.
Later, we will discuss in more detail how these interval frequencies
are obtained.

A short—term memory window determines the span of recent
events that can form intervals. The size (duration) of this window
is fixed. The tempo of the piece will determine the number of
recent events that can be recalled and influence the perception of a

boundary.

We can now formalise the notion of melodic density (MD)
as the weighted sum of the contributions of all intervals occur-
ring over a period of time determined by the memory window. So
given a sequence of IV events (e, ..., en ) representing a melodic
sequence the melodic density d; at event 4, is defined as:

ti—ti—m<Mt;—t;—m-—n<M

we %

m=0 n=1

f(ri(m,n)) - ai(m,n)  (2)

where f(r) is a function that returns the frequency of an inter-
val, and f(r) € [0,1],7; € 0,1,...12, and r;(m,n) = |pi—m —
Pi—m—n| denotes a pitch interval in semitones, where pj, denotes
the MIDI pitch of event e, and

ti - ti—m—n
——— ey 3)

ai(m,n) = (1— %

is the attenuation function, where ¢; denotes the onset time
of event e;, and M is the duration of the memory window (in sec-
onds). It is worth noting that a Gestalt-based principle of proximity
is encapsulated in the attenuation function, as this will return val-
ues closer to 1 for recent and low-order intervals, and values closer
to O for remote and high-order intervals.

Finally, boundaries are indicated by local minima in the melodic
density profile obtained from Equation 2.

4. EXPERIMENTS AND RESULTS

To assess the behavior of the model we used both the LBDM and
the MDSM on a set of melody examples. For each of the examples
we also obtained a pattern boundary profile, which indicates the
location of recurrent patterns within the melodic sequence (see [1]
for details).

The interval frequencies given by function f were obtained
from the combined frequencies of intervals that occurr in major
and minor scales. This major-minor framework is described by
Camboroupoulos in his General Pitch Interval Representation (GPIR)
[1]. The memory window M was set to 4 seconds.

Table 2 summarises the boundary counts for each melody, in-
cluding pattern boundaries and the segment boundaries generated
by both the LDBM and the MDSM. A boundary is marked correct
if its location coincides with a pattern boundary, with a tolerance
of +/-1 event. A threshold of 70% was adopted to filter only the
most prominent peaks from the boundary profiles.
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Figure 1: Normalised MDSM and LBDM boundary profiles for
melody number 2 (Frere Jacques). Underlined values indicate se-
lected peaks. Pattern Boundaries(PB) are indicated in the bottom
row
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Table 2: Results obtained for 7 melodies, showing the total no. of
pattern boundaries (PB), and for both the LBDM and MDSM: total
no. of pattern boundaries found (fnq4), no. of pattern boundaries
not found (no¢ fn4) and no. expurious boundaries found (ez)
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Table 3: F-measure for the LBDM and MDSM

Model P R F

LBDM 0.85 0.67 0.75
MDSM 0.93 0.88 0.91

In total the LBDM generated 58 boundaries against only 49
by the MDSM. From the analysis of Table 2 it may be observed
that both models find approximately the same number of pattern
boundaries, but the MDSM is more conservative, generating only 6
excessive boundaries, against the 19 of the LBDM. In the melodies
where excessive boundaries where found, the MDSM always reg-
ister a lower count. However It must be noted that melody num-
ber 6 alone (theme of Mozart’s Symphony in Gm) is responsi-
ble for the majority of the excessive boundaries generated by the
LBDM. For a numerical comparison between the performance of
both models the F'-measure [10] was used. The F'-measure is

given by the weighted harmonic mean of Precision(P) and Recall(R).

PxR
Freasure =2 X P+R (4)
where
_ PBina _ PBina )
PBfnd + PBnotfnd’ PBfnd + PBemceSand

In table 3 we can see that although the MDSM only has a
slightly higher Precision, it has a significantly higher Recall re-
sulting in a higher value of F'.

In Figure 1 we show the boundary profiles of both models to-
gether with the score of melody no. 2 (Frere Jacques). For ease of
comparison, the melodic density profile of the MDSM has been
inverted ! and normalised in the range 0-100%. From this ex-
ample it seems clear that some of the boundaries generated by
the LBDM were eliminated due to the 70% selection threshold,

Irecall that for the MDSM boundaries are obtained from the lower
peaks on the profiles

although smaller peaks can be found in the vicinity of the pat-
tern boundaries that were missed.. An adjustment of the selec-
tion threshold to considerably lower values, will result in a sig-
nificant increase of the number of peaks that are extracted, and
consequently in an increase of the number of spurious boundaries.
On the other hand, we would expect that an increase of the se-
lection threshold would increase the selectivity of the model. In
Figure 2 we can observe that this is not always the case. Most of
the peaks of the LBDM profile have values over 80% or even 90%,
thus making the elimination of the excessive boundaries difficult
to achieve only by adjusting the selection threshold. The example
of Figure 2 highlights also that most of the boundaries “filtered”
by the MDSM are not coincident with pattern boundaries.

5. DISCUSSION

The boundary selectivity reported on the MDSM, results partially
from the propagation of the intervals over a time window creating
a ”smoothing” effect. However this effect can be also a drawback
of this approach. In some cases, boundaries can be shifted for-
ward or prolonged due to a slower decay of the melodic density
function. This is visible in Figure 1 where the boundary peak af-
ter the third measure is followed by a significantly slow decay of
the MDSM values (specially when compared with the sharp drop
on the LDBM profile), until it meets the following peak. This
may have an impact on the accuracy of the boundary locations, in
particular when matched without tolerance, against pattern bound-
aries.

Although tempo was kept constant in this study, the MDSM is
robust to small changes in tempo. This is mainly due to the dis-
crete nature of the events, combined with a memory window of
fixed size. For example, with a tempo of crotchet=60, a memory
window of 5 seconds would include 5 crotchets (or the equivalent
in duration), and an increase of the tempo to crotchet=72 would
be necessary to include an additional crotchet in the calculations.
Few studies have addressed the effects of changes in tempo in mu-
sic perception [11]. Although the present model was designed to
account for changes in tempo, a systematic evaluation of these ef-
fects has not yet been included. For such analysis we may require
that listeners be tested on the effects of changes in tempo to pro-
vide data to be compared with the model.

The choice of the attenuation function (a decaying polyno-
mial), is the result of preliminary experiments with the algorithm,
where several decaying functions were examined. However, it
must be said, the differences were not conclusive. It seems in-
tuitive that, in general, less recent notes have a smaller contribu-
tion to the melodic cohesion of a sequence, than more recent ones.
However, to the best of our knowledge, there is no theoretical or
experimental evidence to support the choice of a specific memory
decaying function.

As mentioned previously, interval frequencies were obtained
from the combined statistics of interval counts from major and mi-
nor scales. Since one of the motivations of this work is to devise
a model that can segment melodies without any domain specific
knowledge, we propose that these frequencies may be acquired
from a music corpus that is representative of the melodies being
analysed. This idea is supported by several studies, some of which
were carried out outside the western musical culture, that report,
for example, the prevalence of small melodic intervals in melodic
lines [7, 12]. If indeed the melodic preferences of a particular
musical culture are reflected in the musical material, it seems rea-
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Figure 2: Boundary profiles obtained with LBDM (dotted line) and MDSM (solid line) for melody no. 6 (theme of Mozart’s Symphony in
Gm). Pattern boundaries are indicated by arrows at the bottom of the chart.

sonable to reverse this process, by using implicit intervalic infor-
mation to interpret the musical material.

6. CONCLUSIONS

We presented the MDSM, a memory-based melodic segmentation
algorithm based on the concept of melodic density. We compared
this algorithm with the LBDM, for a set of melody examples. It
was shown that in general the MDSM has higher selectivity than
the LBDM, generating fewer total boundaries but preserving most
boundaries indicated as pattern boundaries. This suggests that the
MDSM may be used successfully as a pre-processing method for
pattern finding algorithms, providing additional reduction of the
search space without the cost of eliminating many candidate pat-
tern boundaries.

The contribution of this new approach lies in the way it incor-
porates pitch and time, and in particular in the use of tempo as a
parameter together with a short-term memory window, thus seek-
ing a more cognitively realistic approach to melodic segmentation.
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