
Algorithms for discovering repeated patterns in multidimensional
representations of polyphonic music∗

David Meredith
Department of Computing,

City University, London.

dave@titanmusic.com

Kjell Lemström
Department of Computer Science,

University of Helsinki.

klemstro@cs.helsinki.fi

Geraint A. Wiggins
Department of Computing,

City University, London.

geraint@soi.city.ac.uk

March 10, 2003

Abstract

In this paper we give an overview of four algorithms
that we have developed for pattern matching, pattern
discovery and data compression in multidimensional
datasets. We show that these algorithms can fruit-
fully be used for processing musical data. In particular,
we show that our algorithms can discover instances of
perceptually significant musical repetition that cannot
be found using previous approaches. We also describe
results that suggest the possibility of using our data-
compression algorithm for modelling expert motivic-
thematic music analysis.

1 Introduction

In this paper we give an overview of some algorithms
that we have developed for discovering perceptually sig-
nificant repeated patterns in polyphonic music. These
algorithms can straightforwardly be adapted for mu-
sic information retrieval (pattern matching) and data-
compression. We’ll begin in the next section by pre-
senting some examples of perceptually significant re-
peated patterns in music which illustrate just how di-
verse this class of phenomena is.

Many music psychologists and music analysts (Bent
and Drabkin, 1987; Lerdahl and Jackendoff, 1983; Nat-
tiez, 1975; Ruwet, 1972; Schenker, 1954; Temperley,
2001) have noted that being able to identify the per-
ceptually significant repetitions in a passage of music
is often extremely important for achieving a rich un-
derstanding of it. However, the vast majority of exact
repetitions in a piece of tonal music do, in fact, go un-
noticed by listeners (see below).

It seems that most previous approaches to repetition
discovery in music have been based on the assumption
that the music to be processed is represented in the
form of a string or a set of strings. We will briefly re-
view some of these string-based approaches and demon-
strate that there seem to be certain important types of
musical repetition that are very difficult to find using
such approaches. In particular, it seems that if one

∗The algorithms described in this paper are the subject of an
international patent application (Meredith et al., 2002b).

wants to find a wide range of different types of musical
repeated pattern using a string-based approach, one
generally has to run a variety of different algorithms
on a number of different representations of the music.

In our work we have avoided such difficulties by
adopting a geometric approach in which the music
to be analysed is represented as a multidimensional
dataset—that is, a set of points in a Euclidean space.
We have found that by doing this we are able to, first,
process polyphonic music as easily and efficiently as
monophonic music; second, compute some of the rep-
etitions that are difficult to find using a string-based
approach; and third, essentially dispense with multi-
ple representations because we can run the same small
set of algorithms on various orthogonal projections of
a single, rich multidimensional representation of the
music.

In this paper we briefly describe two repetition dis-
covery algorithms, SIA and SIATEC, that are based on
this new approach. SIA computes all the maximal re-
peated patterns in a dataset and SIATEC computes all
the occurrences of all the maximal repeated patterns in
a dataset. We then briefly discuss what happens when
you run these algorithms on music data. For detailed
descriptions of the algorithms and precise definitions
of the functions that they compute, see Meredith et al.
(2002a) and Meredith et al. (2002b).

Our experiments suggest that the repeated patterns
that we are interested in finding are often either equal
to the maximal repeated patterns computed by SIA or
derivable from them. However, typically, SIA also gen-
erates many patterns that are not musically interest-
ing. Some post-processing is therefore usually required
to isolate the interesting repetitions in the output of
SIA and SIATEC and we suggest some heuristics that
seem to be useful for doing this.

When these heuristics are incorporated into a data-
compression algorithm based on SIATEC (which we call
COSIATEC), we find that we can generate some quite
interesting motivic and thematic music analyses. We
then describe a pattern-matching algorithm based on
SIA, which we call SIAMESE. This algorithm finds com-
plete and partial matches of multidimensional query
patterns in multidimensional datasets. Although in

1

Meredith, Lemström and Wiggins, Discovering Repeated Pattern in Polyphonic Music

3

3 3

3

A1 A2 A3

A4 A5A3 (cont.)

Figure 1: Opening bars of Barber’s Sonata for Piano,
Op.26

this paper we focus on the musical applications of these
algorithms, it is important to remember that the algo-
rithms are, in fact, quite general and can be used to
process any data that can appropriately be represented
in the form of a multidimensional dataset. We end the
paper with some suggestions for further research

2 The diversity of musical repe-
tition

Many music psychologists and music analysts (Bent
and Drabkin, 1987; Lerdahl and Jackendoff, 1983; Nat-
tiez, 1975; Ruwet, 1972; Schenker, 1954; Temperley,
2001) have stressed that identifying the significant rep-
etitions in a piece of music is an essential part of achiev-
ing a rich and satisfying interpretation of it. Our work
was originally motivated by the desire to develop a
computational model of expert music cognition and it
seems clear that one component of such a model would
have to be able to discover perceptually significant rep-
etitions, or instances of parallelism, as it is generally
called by music psychologists and analysts.

However, the class of perceptually significant repe-
titions is a very diverse set. There are at least two
reasons for this: first, the patterns involved in such rep-
etitions vary widely in their structural characteristics;
and second, there are many different ways of trans-
forming a musical pattern to give another pattern that
is perceived to be a version of it. For example, musi-
cal themes and motives can be truncated, augmented,
diminished, inverted, reversed, embellished and so on.

The patterns involved in perceptually significant rep-
etitions vary widely in size from small motives (such
as the rising bass line in Figure 1) to whole sections
of works containing hundreds of notes such as the ex-
position of a sonata-form movement. In polyphonic
music in which the voices are unambiguously identifi-
able, the notes in a repeated pattern may all come from
one voice or they may come from two or more voices.
For example, in the stretto passage shown in Figure 2,
each statement of the subject only contains notes from
a single voice.

On the other hand, in Figure 3, each occurrence of

Figure 2: Bars 14–16 from Fugue in C major from Book
1 of J. S. Bach’s Das Wohltemperirte Klavier (BWV
846).

Figure 3: Bars 16–19 of the first movement from
Mozart’s Symphony in G minor, K.550.

the repeated pattern involves the whole orchestra and
contains notes from 13 voices. These two examples also
show that the occurrences of a pattern may overlap as
they do in Figure 2 or they may occur consecutively, as
they do in Figure 3. The occurrences of a perceptually
significant musical repeated pattern may also be widely
separated in the music as they are, for example, in the
case of the exposition and recapitulation of a sonata-
form movement.

Repeated musical patterns also exhibit different
types of compactness. For example, the repeated pat-
tern in Figure 3 is temporally compact—that is, it con-
tains all the notes that occur within the time period
spanned by the pattern. On the other hand, the rising
bass pattern in Figure 1 is bounding box compact—it
contains all the notes that occur within the pattern’s
bounding box when the music is represented as a graph
of chromatic pitch against time. In Figure 2, the re-
peated overlapping occurrences of the subject exhibit
yet another type of compactness: each occurrence con-
tains all the notes that occur in a single voice within
the time period spanned by the pattern. In Figure 5
we see themes being transformed by diminution and in-
version and in Figure 4 we see an example of a simple
melodic idea being embellished by diminution (Forte

Meredith, Lemström and Wiggins, Discovering Repeated Pattern in Polyphonic Music

A B

1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4: Example of diminution.

4

Figure 5: Bars 1–5 of Contrapunctus VI from J. S.
Bach’s Die Kunst der Fuge (BWV 1080).

and Gilbert, 1982), a process in which each long note
is replaced by a sequence of shorter notes.

3 Most repetitions in music are
not interesting

Although identifying the important repetitions in a
piece significantly enriches a listener’s understanding,
not all repeated musical patterns are interesting and
significant. For example, in Figure 6 the pattern con-
sisting of the notes in elliptical boxes is repeated 7
crotchets later, transposed up a minor ninth to give
the pattern consisting of the notes in square boxes.
Clearly, this repetition is just an artefact that results
from the other musically significant repetitions that are
occurring in this passage such as, for example, the ex-
act repetition of bar 3 in bar 4.

In fact, it turns out that, typically, the vast majority
of exact repetitions that occur within a piece of music

Figure 6: Bars 1–6 of Rachmaninoff’s Prelude in C!
minor, Op.3, No.2. The pattern consisting of the notes
in square boxes is an exact transposed repetition of the
pattern consisting of the notes in elliptical boxes.

3
A B

Figure 7: Two versions of a melodic idea separated by
a high edit distance.

are not musically interesting. One of the motivations
behind our work has been to develop algorithms that
extract only the interesting repeated patterns of a par-
ticular type from the music. This involves formally
characterising what it is about the interesting repe-
titions that distinguishes them from the many exact
repetitions that the expert listener and analyst do not
recognize as being important.

4 Previous approaches to repe-
tition discovery in music

It seems that most previous attempts to develop a rep-
etition discovery algorithm for music have been based
on the assumption that the music to be analysed is
represented as a string of symbols or as a set of such
strings. An example of such an approach is Pierre-Yves
Rolland’s FlExPat program (Rolland, 1999). This pro-
gram can find approximate repetitions within a mono-
phonic source. It can also be used to find repeated
monophonic patterns in a polyphonic work in which
each voice is represented as a string. Also, it is ca-
pable of finding repeated monophonic patterns which
contain ‘gaps’. However it suffers from a few weak-
nesses. First, it cannot deal with unvoiced polyphonic
music such as piano music. Second, it can only find
patterns whose sizes lie within a user-specified range
and if the range is set so that it allows patterns of
any size, the overall worst-case running time goes up
to at least O(n4). Third, like most string-based ap-
proaches to approximate pattern matching, it uses the
edit-distance approach to compute the similarity be-
tween patterns. Unfortunately, such an approach is
not typically capable of finding a match between a pat-
tern and a highly-embellished variation on the pattern
such as the one shown in Figure 7. In this example
the edit distance between the two occurrences is rather
large owing to the high number of insertions required
to transform the plain version (A) into the embellished
one (B). A program like Rolland’s regards two patterns
as being similar if the edit distance between them is less
than some threshold k. However, for these two patterns
to be considered ‘similar’ by Rolland’s algorithm, this
value of k would have to be set to at least 14 to allow
for all those extra notes to be inserted. Unfortunately,
this value would in general be too high because the
program would then start regarding highly dissimilar
patterns as being similar.

Hsu et al. (1998) describe a repetition discovery al-
gorithm for music that uses the dynamic programming
technique. This algorithm suffers from a number of se-

Meredith, Lemström and Wiggins, Discovering Repeated Pattern in Polyphonic Music

Figure 8: Bars 1–2 of the Prelude in C minor from Book
2 of J. S. Bach’s Das Wohltemperirte Klavier (BWV
871).

rious weaknesses. First, it cannot be used for analysing
unvoiced polyphonic music. Second, it is not capable,
as described, of finding transposed repetitions. Third,
it has a worst-case running time of O(n4) which means
it is too slow to be used for analysing large pieces. Fi-
nally, it only finds repeated factors and therefore can-
not find patterns ‘with gaps’. That is, it can only find
the repetitions of a pattern if the pattern contains all
the notes in the piece that occur during the time inter-
val spanned by the pattern.

Cambouropoulos’s (1998) General Computational
Theory of Musical Structure also contains a pattern
discovery component, that, in the most recent incar-
nation of the theory, is based on Crochemore’s (1981)
‘set partitioning’ algorithm. In Cambouropoulos’s the-
ory, this pattern-discovery algorithm is used to help
with determining the boundaries of the segments that
are then categorised. Crochemore’s algorithm is very
fast—it runs in O(n log2 n) time. However, the algo-
rithm does suffer from a couple of short-comings: first,
it cannot find patterns with gaps; and, second, it can-
not be used for finding patterns in unvoiced polyphonic
music.

In a recent approach described by Conklin and Anag-
nostopoulou (2001), a number of different string rep-
resentations each representing a different ‘viewpoint’
on the music, are derived from a rich representation of
the music to be analysed. They then discover repeated
factors in these various string representations and iso-
late those factors that occur most frequently. Their
approach is interesting because it offers a crude way of
identifying repeated patterns at higher structural levels
than the musical surface—one of their viewpoints, for
example, represents just the first note in each crotchet
beat. However, such an approach would not be capa-
ble of finding the example shown in Figure 7 because
the notes that are common to both occurrences of the
pattern do not all fall on strong beats. There is a mul-
titude of string-processing algorithms available for dis-
covering repeated factors in strings. However, there are
far fewer algorithms available for finding repeated sub-
sequences (i.e. patterns with gaps) and most of these
seem to be NP-complete.

{ 〈0, 27, 16, 2, 2〉, 〈1, 46, 27, 1, 1〉, 〈2, 39, 23, 2, 2〉,
〈2, 44, 26, 1, 1〉, 〈3, 46, 27, 1, 1〉, 〈4, 32, 19, 2, 2〉,
〈4, 47, 28, 1, 1〉, 〈5, 44, 26, 1, 1〉, 〈6, 39, 23, 2, 2〉,
〈6, 42, 25, 1, 1〉, 〈7, 44, 26, 1, 1〉, 〈8, 30, 18, 2, 2〉,
〈8, 46, 27, 1, 1〉, 〈9, 42, 25, 1, 1〉, 〈10, 39, 23, 2, 2〉,
.
〈26, 29, 17, 1, 2〉, 〈26, 51, 30, 2, 1〉, 〈27, 30, 18, 1, 2〉,
〈28, 32, 19, 1, 2〉, 〈28, 41, 24, 2, 1〉, 〈29, 29, 17, 1, 2〉,
〈30, 27, 16, 1, 2〉, 〈30, 50, 29, 2, 1〉, 〈31, 29, 17, 1, 2〉 }

Figure 9: Five-dimensional dataset representing the
music in Figure 8.

5 Representing music using mul-
tidimensional datasets

All the algorithms discussed in the previous section
are based on the assumption that the music is rep-
resented either as a 1-dimensional string of symbols
or, in the case of polyphonic music, as a set of such
symbol strings and this assumption seems to be the
cause of many of their short-comings. For example,
the fact that they process symbol strings means that
these algorithms cannot deal with unvoiced polyphonic
music such as keyboard music. Their string-matching
basis also causes problems when it comes to finding
patterns that are distributed between several voices or
finding transposed occurrences of polyphonic patterns
with gaps.

We have avoided these problems by adopting a geo-
metric approach in which the music is represented as a
multidimensional dataset. A multidimensional dataset
is just a finite set of position vectors or datapoints in
a Euclidean space with a finite number of dimensions.
Our algorithms work with datasets of any dimension-
ality and any size. Also the co-ordinates may take real
values.

There are many possible appropriate ways of repre-
senting a piece of music as a multidimensional dataset.
For example, Figure 9 shows a 5-dimensional dataset
that represents the score in Figure 8. Each datapoint
in Figure 9 represents a single note event in the score.
The co-ordinate values in each datapoint represent on-
set time (in semiquavers), chromatic pitch (Meredith,
1999, 2001) (essentially MIDI number—a number indi-
cating the key on a normal piano keyboard that would
have to be pressed to produce a tone with that pitch),
morphetic pitch (Meredith, 1999, 2001) (essentially the
same as Brinkman’s (1986) ‘continuous name code’),
duration and voice respectively.

We can then consider various orthogonal projections
of such a dataset. For example, we could just consider
the first two dimensions in the dataset in Figure 9 and
get the projection in Figure 10 which tells us the chro-
matic pitch and onset time of each note.

If we consider just the first and third dimensions
in Figure 9 we get the two-dimensional graph of mor-
phetic pitch (diatonic pitch) against onset time shown
in Figure 11. Note that some of the patterns that were
only similar in Figure 10 are now identical because we
are using a representation of diatonic pitch. It is often

Meredith, Lemström and Wiggins, Discovering Repeated Pattern in Polyphonic Music

Figure 10: Two-dimensional projection of dataset in
Figure 9 showing chromatic pitch against onset-time.

Figure 11: Two-dimensional projection of dataset in
Figure 9 showing morphetic pitch against onset-time.

more profitable when analysing tonal music to look for
exact repetitions in this type of projection than in the
chromatic-pitch-against-onset-time representation.

Adopting this geometric approach allows us to find
classes of perceptually significant musical repetition
that are very difficult to compute using string-based
approaches. It also allows us to process polyphonic
music as simply and efficiently as monophonic music.
It dispenses with the need for multiple representations
because we can run the same repetition discovery al-
gorithms on various orthogonal projections of a single,
rich multidimensional dataset representation. It also
allows us to discover repetitions in the dynamic, tim-
bre and rhythmic structure of a piece as well as its pitch
structure.

6 SIA: Discovering maximal re-
peated patterns in multidi-
mensional datasets

SIA takes a multidimensional dataset as input and
finds for every possible vector the largest pattern in
the dataset that can be translated by that vector to
give another pattern in the dataset. For example, if
we consider the dataset in Figure 12, then the largest
pattern that can be translated by the vector 〈1, 0〉 is
the pattern {a, b, d} and the largest pattern that can be
translated by the vector 〈1, 1〉 is the pattern {a, c}. We

0

1

2

3

0 1 2 3

×

×

×
×
×

×
a

b

c

d

e

f

y

x

Figure 12: A simple dataset.

f = 〈3, 2〉

e = 〈2, 3〉

d = 〈2, 2〉

c = 〈2, 1〉

b = 〈1, 3〉

a = 〈1, 1〉

〈2, 1〉

〈1, 2〉

〈1, 1〉

〈1, 0〉

〈0, 2〉

〈2,−1〉

〈1, 0〉

〈1,−1〉

〈1,−2〉

〈1, 1〉

〈0, 2〉

〈0, 1〉

〈1, 0〉

〈0, 1〉

〈1,−1〉

〈1, 1〉 〈1, 3〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 〈3, 2〉
a b c d e f

! ! ! ! !

From

To

Figure 13: Vector table for dataset in Figure 12.

say that a pattern is translatable by a vector if it can
be translated by the vector to give another pattern in
the dataset. And we say that the maximal translatable
pattern or MTP for a vector is the largest pattern that
can be translated by the vector to give another pattern
in the dataset. SIA discovers all the non-empty MTPs
in a dataset.

The first step in SIA is to sort the dataset to be
analysed. Then the algorithm constructs a vector table
for the dataset like the one in Figure 13 which shows
the vector table constructed by SIA for the dataset in
Figure 12. A cell in the vector table contains the vector
from the datapoint at the head of the column of that
cell to the datapoint at the head of the row for that
cell.
SIA computes all the values in the vector table below

the leading diagonal as shown in Figure 13. In other
words, it computes for each datapoint all the vectors
from that datapoint to every other datapoint in the
dataset greater than it. Note that each of the vectors
in the vector table (Figure 13) is stored with a pointer
that points back to the “origin” datapoint for which it
was computed (that is, the datapoint at the top of its
column).
SIA then simply sorts the vectors in the vector ta-

ble using a slightly modified version of merge sort that
takes advantage of the fact that the columns in this
table are already sorted. This results in a list like the
one shown in Figure 14 which shows the result of sort-
ing the vectors in the vector table in Figure 13. Note

Meredith, Lemström and Wiggins, Discovering Repeated Pattern in Polyphonic Music

〈2, 1〉

〈2,−1〉

〈1, 2〉

〈1, 1〉

〈1, 1〉

〈1, 0〉

〈1, 0〉

〈1, 0〉

〈1,−1〉

〈1,−1〉

〈1,−2〉

〈0, 2〉

〈0, 2〉

〈0, 1〉

〈0, 1〉

〈1, 1〉

〈1, 3〉

〈1, 1〉

〈2, 1〉

〈1, 1〉

〈2, 2〉

〈1, 3〉

〈1, 1〉

〈2, 3〉

〈1, 3〉

〈1, 3〉

〈2, 1〉

〈1, 1〉

〈2, 2〉

〈2, 1〉

Vector Datapoint

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

Figure 14: The vectors in the vector table in Figure 13
sorted into increasing order.

that each vector in this list is still linked to the dat-
apoint at the head of its column in the vector table.
Simply reading off all the datapoints attached to the
adjacent occurrences of a given vector in this list gives
us the maximal translatable pattern for that vector.
The complete set of non-empty maximal translatable
patterns can be obtained simply by scanning the list
once, reading off the attached datapoints and start-
ing a new pattern each time the vector changes. Each
box in the right-hand column of the list corresponds to
a maximal translatable pattern. The most expensive
step in this process is sorting the vectors which can be
done in a worst-case running time of O(kn2 log2 n) for a
k-dimensional dataset of size n. The space complexity
of this version of the algorithm is O(kn2). However,
Ukkonen et al. (2003) describe an implementation of
the algorithm that uses only O(n) working space.

7 SIATEC: Discovering all the oc-
currences for each maximal
translatable pattern

SIATEC first generates all the maximal translatable pat-
terns using a slightly modified version of SIA and then
it finds all the occurrences of each MTP.

As explained in the previous section, SIA only com-
putes the vectors below the leading diagonal in the vec-
tor table (see Figure 13). This is because the maximal
translatable pattern for a vector −v is the same as the
pattern that you get by translating the maximal trans-
latable pattern for v by the vector v itself. However,
it turns out that by computing all the vectors in the
vector table we can more efficiently discover all the oc-

currences of any given pattern within the dataset. So,
for the dataset in Figure 12, SIATEC would actually
compute the complete vector table as shown in Fig-
ure 15 and would then use the region below the lead-
ing diagonal in this table to compute the MTPs as in
SIA. Before computing this vector table, the dataset is
sorted so that the vectors increase as one descends a
column and decrease as one moves from left to right
along a row.

We know that a given column in the vector table (see
Figure 15) contains all the vectors that the datapoint
at the top of the column can be translated by to give
another point in the dataset. Say we want to find all
the occurrences of the pattern {a, c} in Figure 12 which
is the maximal translatable pattern in this dataset for
the vector 〈1, 1〉. When we say that we want to “find
all the occurrences” of a pattern, all we actually need
to find is all the vectors that the pattern is translatable
by. So, for example, the pattern {a, c} is only translat-
able by the vectors 〈1, 1〉 and 〈0, 2〉. We know that the
column of vectors under a contains all the vectors that
the point a can be translated by; and we know that the
column under c contains all the vectors that the point
c can be translated by. So we know that the pattern
{a, c} can only be translated by the vectors that occur
in both of these columns. In other words, to find the
set of occurrences for a given pattern we simply have
to find the intersection set of the columns headed by
the datapoints in the pattern. By exploiting the or-
deredness of this table, we can find all the occurrences
of a k-dimensional pattern of size m in a dataset of size
n in a worst-case running time of O(kmn). We know
that the complete set of maximal translatable patterns
is found by SIA simply by sorting the vectors below the
leading diagonal in the vector table. If there are l such
patterns and mi is the size of the ith pattern then this
implies

l∑

i=1

mi ≤
n(n − 1)

2
.

So the overall worst-case running time of SIATEC is

O

(
l∑

i=1

kmin

)
≤ O

(
kn2(n − 1)

2

)
.

The worst-case time complexity of the algorithm is
therefore O(kn3) for a k-dimensional dataset of size n.
The space complexity of the algorithm is O(kn2) if one
stores the complete vector table. However, if one uses
the techniqe described by Ukkonen et al. (2003), this
worst-case space complexity can be reduced to O(kn).

8 Running SIA and SIATEC on
music data

SIA and SIATEC were implemented in C and run on a
500MHz Sparc machine on 52 datasets ranging in size
from 6 to 3500 datapoints and in dimensionality from
2 to 5 dimensions. The graph in Figure 16 shows the

Meredith, Lemström and Wiggins, Discovering Repeated Pattern in Polyphonic Music

From
a = 〈1, 1〉 b = 〈1, 3〉 c = 〈2, 1〉 d = 〈2, 2〉 e = 〈2, 3〉 f = 〈3, 2〉

a = 〈1, 1〉 〈0, 0〉 〈0,−2〉 〈−1, 0〉 〈−1,−1〉 〈−1,−2〉 〈−2,−1〉
b = 〈1, 3〉 〈0, 2〉 〈0, 0〉 〈−1, 2〉 〈−1, 1〉 〈−1, 0〉 〈−2, 1〉
c = 〈2, 1〉 〈1, 0〉 〈1,−2〉 〈0, 0〉 〈0,−1〉 〈0,−2〉 〈−1,−1〉

To d = 〈2, 2〉 〈1, 1〉 〈1,−1〉 〈0, 1〉 〈0, 0〉 〈0,−1〉 〈−1, 0〉
e = 〈2, 3〉 〈1, 2〉 〈1, 0〉 〈0, 2〉 〈0, 1〉 〈0, 0〉 〈−1, 1〉
f = 〈3, 2〉 〈2, 1〉 〈2,−1〉 〈1, 1〉 〈1, 0〉 〈1,−1〉 〈0, 0〉

Figure 15: Vector table computed by SIATEC for dataset in Figure 12.

Figure 16: Running time of SIA on 2-dimensional
datasets.

Figure 17: Running time of SIATEC on 2-dimensional
datasets.

running time of SIA for the 2-dimensional datasets in
the sample. The smooth curve in Figure 16 represents
a running time of kn2 log2 n. The graph in Figure 17
shows the running time of SIATEC on the same machine
for the 2-dimensional datasets in the sample. In this
graph, the smooth curve represents a running time of
kn3. As can be seen from these two graphs, it took less
than 2 minutes for SIA to process a piece containing
3500 notes and about 13 minutes for SIATEC to process
a piece containing 2000 notes.

9 Isolating significant repeti-
tions

A dataset of size n contains 2n distinct subsets and the
number of patterns generated by SIA is less than n2

2 .
Therefore, for all but the smallest datasets, SIA gen-
erates only a tiny fraction of all patterns in a dataset.
Our experiments suggest that the repeated patterns
that we’re interested in (including many that are very
hard to find using string-matching techniques) are of-

!

"
! ! !! !!

Pitch

Time

#
#
#$

$
$#
#
#$

$
$

#
#
#$

$
$

Figure 18: A dataset with three occurrences of a pat-
tern indicated.

!

"
! !! ! !!! !!Pitch

Time

#
#
#$

$
$

#
#
#$

$
$

#
#
#$

$
$

Figure 19: A dataset with three occurrences of a pat-
tern indicated.

ten either equal to the maximal translatable patterns
generated by SIA or straightforwardly derivable from
them. Nevertheless, only a very small proportion of the
patterns generated by SIA would be considered musi-
cally interesting by an analyst or expert listener. For
example, SIA discovers over 70000 MTPs in Rachmani-
noff’s Prelude, Op.3 No.2 (see Figure 6) and probably
fewer than 100 of these would be considered interesting
by a music analyst. This means that we need to devise
systems that evaluate the output of SIA and SIATEC
and isolate various classes of musically interesting rep-
etitions.

How can we isolate the theme-like and motive-like
patterns in a passage? Some feasible heuristics for do-
ing this will now be described.

First of all, it seems useful to define the coverage
of a pattern to be the number of datapoints in the
dataset that are members of occurrences of the pat-
tern. For example, in Figure 18 the coverage of the tri-
angular pattern is 6, but in Figure 19, the coverage of
the triangular pattern is 9. Note that coverage is gen-

Meredith, Lemström and Wiggins, Discovering Repeated Pattern in Polyphonic Music

!

"
×

×

×

×

×

×

×

×

"
"

"
"

Pitch

Time

Figure 20: Defining ‘the region spanned by a pattern’
to be the time segment spanned by the pattern.

!

"
×

×

×

×

×

×

×

×

"
"

"
"

Pitch

Time

Figure 21: Defining ‘the region spanned by a pattern’
to be the bounding-box spanned by the pattern.

erally greater for patterns whose occurrences overlap
less. It is also generally greater for larger patterns and
for those that occur more often. In general, it seems
that the most theme-like and motive-like patterns in
music have relatively high coverage.

Next it seems useful to define the compactness of a
pattern to be the ratio of the number of points in the
pattern to the total number of points in the dataset
that occur within the region spanned by the pattern
within a particular representation. One can define ‘the
region spanned by a pattern’ in a number of different
ways. For example, we could define it to be the smallest
time segment that contains the pattern, as illustrated
in Figure 20. If we define it in this way, then the pat-
tern consisting of the four round points in Figure 20
has a compactness value of 4

12 = 1
3 . Alternatively, one

could define the region spanned by a pattern to be the
bounding-box or the convex hull of the pattern in the

!

"
×

×

×

×

×

×

×

×

"
"

"
"

Pitch

Time

#
#
#%%

%
%%
&

&
&

&&$
$

$

Figure 22: Defining ‘the region spanned by a pattern’
to be the convex hull spanned by the pattern.

pitch-against-onset-time graph of the piece. If we use
the bounding box, as in Figure 21 then the compactness
of the pattern consisting of the points marked by dots
would be 4

10 = 2
5 . However, if we use the convex hull,

as shown in Figure 22 then the compactness value of
the same pattern in the same dataset would be 4

6 = 2
3 .

Typically, at least one occurrence of a theme-like pat-
tern will have a high compactness value, even if the
other occurrences are highly embellished. Another in-
teresting heuristic that seems to be useful for isolating
theme-like patterns is the compression ratio that can
be achieved by representing the set of points covered
by all occurrences of the pattern by specifying simply
one occurrence of the pattern and all the vectors by
which the pattern can be translated. For example, in
Figure 18 the set of points covered by the occurrences
of the triangular pattern can be represented by speci-
fying the points in one occurrence of the pattern and
the two translation vectors that map that occurrence
onto the other two occurrences of the pattern in this
dataset. That is, we can represent the 6 datapoints
in Figure 18 using 3 position vectors and 2 translation
vectors, thus achieving a compression ratio of 6

5 . If we
represent the dataset in Figure 19 in the same way we
can achieve a compression ratio of 9

5 . In general, it
seems that a high compression ratio can be achieved if
we represent the set of points covered by all the occur-
rences of an important thematic pattern by specifying
just one occurrence of the pattern and all the vectors
by which the pattern can be translated. In the next
section we use this idea of compression ratio in a com-
pression algorithm based on SIATEC that can be used
for generating analyses of pieces that in some cases re-
semble the thematic/motivic analyses carried out by
human music analysts.

10 COSIATEC: a compression algo-
rithm based on SIATEC

COSIATEC is a compression algorithm based on
SIATEC. The flow-chart in Figure 23 describes how
it works. First we run SIATEC on the dataset
to be compressed. This generates a list of
〈PATTERN, TRANSLATOR SET〉 pairs. The trans-
lator set for each pattern contains all the vectors by
which the pattern is translatable within the dataset
apart from the zero vector. In general, this gives a
more efficient representation of the set of points covered
by the occurrences of the pattern. Then the heuris-
tics described in the previous section—compression ra-
tio, coverage and compactness—are used to choose the
‘best’ pattern P and this pattern is printed out together
with its translator set. Then all the points covered by
P—that is all the points that are members of occur-
rences of P—are removed from the dataset. Then if
the dataset is empty the algorithm terminates. How-
ever, if there are still datapoints in the dataset, SIATEC
is again run on the remaining points and the cycle is
repeated. The result is a print out of the ‘best’ pat-

Meredith, Lemström and Wiggins, Discovering Repeated Pattern in Polyphonic Music

FINISH

'

YES

'#$ %&
IS DATASET EMPTY?

'
"

!

(

'

'

'

'

'

)))) NO

#$ %&
REMOVE OCCURRENCES OF P FROM DATASET

PRINT OUT BEST PATTERN P AND ITS TRANSLATORS

LIST of 〈PATTERN, TRANSLATOR SET〉 PAIRS
#$ %&

SIATEC

DATASET

#$ %&
START

Figure 23: COSIATEC

Figure 24: Pattern discovered on first iteration of
COSIATEC when run on Bach’s Two-Part Invention in
C major, BWV 772.

tern and its translators for each iteration of the cycle,
and this printout is, in general, a compressed represen-
tation of the input dataset. Obviously, the degree of
compression achieved depends directly on the amount
of repetition in the dataset.

COSIATEC has been run on morphetic-pitch-
against-onset-time representations of all 15 of Bach’s
Two-part Inventions and the results are quite encour-
aging. In particular, it seems that the patterns that
achieve the highest compression ratios on the early iter-
ations of COSIATEC quite often correspond to the most
important themes and motives in the music.

For example, Figures 24 and 25 show the patterns
discovered by COSIATEC on the first and second iter-
ations, respectively, when the algorithm is run on the
Two-Part Invention in C major, BWV 772. The pat-
tern in Figure 24 is the inversion of the subject and
the pattern in Figure 25 is the subject itself. These

Figure 25: Pattern discovered on second iteration of
COSIATEC when run on Bach’s Two-Part Invention in
C major, BWV 772.

Figure 26: Pattern discovered on first iteration of
COSIATEC when run on Bach’s Two-Part Invention in
D major, BWV 774.

Figure 27: Pattern discovered on second iteration of
COSIATEC when run on Bach’s Two-Part Invention in
D major, BWV 774.

two patterns are precisely the ones identified by Boyd
(1983, p. 96) to be the two most important motivic
patterns in this piece.

When COSIATEC is run on the Two-Part Invention in
D major, BWV 774, the pattern that emerges on the
first iteration consists of the anacrusis and first bar of
the subject (Figure 26) and the pattern that is found
on the second iteration consists of the second part of
the subject (Figure 27). Similarly, when COSIATEC is
run on the Invention in D minor, BWV 775, the sub-
ject of the invention is generated on the first iteration
(Figure 28).

Figure 28: Pattern discovered on first iteration of
COSIATEC when run on Bach’s Two-Part Invention in
D minor, BWV 775.

!
"0

1

0 1 2 3
×

×
×

×
a

b

c

dy

x

Figure 29: Example input query pattern for SIAMESE.

!

"0

1

2

3

0 1 2 3 4

×
×

×

×
×

e

f

g

h

i

y

x

Figure 30: Example input dataset for SIAMESE.

Meredith, Lemström and Wiggins, Discovering Repeated Pattern in Polyphonic Music

11 SIAMESE: Pattern matching in
multidimensional datasets

We have also developed a pattern-matching algorithm
based on SIA which we call SIAMESE. This algorithm
takes a multidimensional query pattern and a multi-
dimensional dataset as input and finds all exact com-
plete and partial matches of the query pattern in the
dataset. For example, if we run SIAMESE on the query
pattern in Figure 29 and the dataset in Figure 30 then
the output will tell us (amongst other things) that the
complete query pattern {a, b, c, d} can be matched to
the pattern {e, f, g, i} in the dataset. It will also tell us
that the three point pattern {a, b, c} in the query can
be matched to the pattern {f, h, i} in the dataset, that
the points {c, d} can be matched to {e, f} and {f, h}
and so on.
SIAMESE works in essentially the same way as SIA.

We begin by sorting the points in the query and the

i = 〈4, 2〉

h = 〈3, 3〉

g = 〈3, 1〉

f = 〈2, 2〉

e = 〈1, 1〉

〈4, 2〉

〈3, 3〉

〈3, 1〉

〈2, 2〉

〈1, 1〉

〈3, 1〉

〈2, 2〉

〈2, 0〉

〈1, 1〉

〈0, 0〉

〈2, 2〉

〈1, 3〉

〈1, 1〉

〈0, 2〉

〈−1, 1〉

〈1, 1〉

〈0, 2〉

〈0, 0〉

〈−1, 1〉

〈−2, 0〉

〈0, 0〉 〈1, 1〉 〈2, 0〉 〈3, 1〉
a b c d

! ! ! !

From

To

Figure 31: The vector table computer by SIAMESE for
the query patter in Figure 29 and the dataset in Fig-
ure 30.

points in the dataset and then we construct a vector
table like the one in Figure 31 which shows the vector
table constructed for the query pattern in Figure 29
and the dataset in Figure 30. Each entry in this table
gives the vector from the query datapoint at the head
of the colum in which the entry occurs to the dataset
point at the head of the row in which the entry occurs.
Note that as in SIA, each vector in the vector table
has a pointer that points back to the query pattern
datapoint at the head of the column in which it occurs.

Having constructed this table, we then simply sort
all the vectors in it to give a list like the one in Figure 32
which shows the list that results when the vectors in
the table in Figure 31 are sorted. This list gives us
all the vectors that we can translate the query pattern
by to give a non-empty match in the dataset. The
fact that each of these vectors still has a pointer to the
query pattern datapoint at the head of its column in
the vector table means that, for each vector, we can
simply read off the points in the query pattern that
have matches in the dataset when the query pattern
is translated by that vector. For example, if we look
at the query pattern datapoints that are pointed to
by vectors with the value 〈1, 1〉 in Figure 32, we find
that all four of the points in the query pattern are

〈−2, 0〉

〈−1, 1〉

〈−1, 1〉

〈0, 0〉

〈0, 0〉

〈0, 2〉

〈0, 2〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈1, 3〉

〈2, 0〉

〈2, 2〉

〈2, 2〉

〈2, 2〉

〈3, 1〉

〈3, 1〉

〈3, 3〉

〈4, 2〉

〈3, 1〉

〈2, 0〉

〈3, 1〉

〈1, 1〉

〈3, 1〉

〈2, 0〉

〈3, 1〉

〈0, 0〉

〈1, 1〉

〈2, 0〉

〈3, 1〉

〈2, 0〉

〈1, 1〉

〈0, 0〉

〈1, 1〉

〈2, 0〉

〈0, 0〉

〈1, 1〉

〈0, 0〉

〈0, 0〉

VECTOR DATAPOINT

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

Figure 32: List of sorted vectors generated by SIAMESE
for the query pattern in Figure 29 and the dataset in
Figure 30.

matched which tells us that a complete occurrence of
the query pattern occurs at a displacement of 〈1, 1〉.
Similarly, if we look at the datapoints attached to the
consecutive occurrences of the vector 〈2, 2〉 in this list,
we find that the points {a, b, c} are matched when the
query is translated by this vector.

The most expensive step in this process is sorting
the vectors in the vector table. Using a comparison
sort such as merge sort, this step can be achieved
in a worst-case running time of O(knm log2(mn)) for
a k-dimensional query pattern of size m and a k-
dimensional dataset of size n.

12 Possible directions for fur-
ther work

We finish by suggesting some directions in which fur-
ther work could be carried out.

• Versions of SIA and SIATEC, COSIATEC and
SIAMESE need to be developed that discover ap-
proximate repetitions (see Ukkonen et al., 2003).

• Algorithms (possibly based on SIA) could be devel-
oped for discovering repetitions where the patterns
are related by rotation, reflection or dilatation (en-
largement).

Meredith, Lemström and Wiggins, Discovering Repeated Pattern in Polyphonic Music

• The running times of SIA and SIATEC could be im-
proved by using word parallelism or by designing
PRAM versions of the algorithms.

• Further heuristics and algorithms could be devel-
oped for isolating various classes of perceptually
significant repetition.

• Applications of the algorithms could be developed
for use in specific domains (e.g., music, images,
video, bioinformatics):

– SIA, SIATEC and COSIATEC can be used for
∗ data compression,
∗ database indexing and
∗ data mining.

– SIAMESE can be used for
∗ information retrieval and
∗ computer-based learning systems.

References

Bent, I. and Drabkin, W. (1987). Analysis . New Grove
Handbooks in Music. Macmillan.

Boyd, M. (1983). Bach. The Master Musicians. J. M.
Dent, London.

Brinkman, A. R. (1986). A binomial representation of
pitch for computer processing of musical data. Music
Theory Spectrum, 8, 44–57.

Cambouropoulos, E. (1998). Towards a General Com-
putational Theory of Musical Structure. Ph.D. the-
sis, University of Edinburgh.

Conklin, D. and Anagnostopoulou, C. (2001). Repre-
sentation and discovery of multiple viewpoint pat-
terns. In Proceedings of the International Computer
Music Conference, 2001, Havana Cuba.

Crochemore, M. (1981). An optimal algorithm for com-
puting the repetitions in a word. Information Pro-
cessing Letters , 12(5), 244–250.

Forte, A. and Gilbert, S. E. (1982). Introduction to
Schenkerian Analysis . Norton, New York.

Hsu, J.-L., Liu, C.-C., and Chen, A. L. (1998). Effi-
cient repeating pattern finding in music databases.
In Proceedings of the 1998 ACM 7th International
Conference on Information and Knowledge Manage-
ment , pages 281–288. Association of Computing Ma-
chinery.

Lerdahl, F. and Jackendoff, R. (1983). A Generative
Theory of Tonal Music. MIT Press, Cambridge, MA.

Meredith, D. (1999). The computational repre-
sentation of octave equivalence in the Western
staff notation system. In Cambridge Music Process-
ing Colloquium, September 1999. Available online at
http://www-sigproc.eng.cam.ac.uk/music proc/submissions/.

Meredith, D. (2001). MIPS: A formal language
for the mathematical investigation of pitch sys-
tems (version 2001-09-10). Available online at
http://www.titanmusic.com/papers.html.

Meredith, D., Lemström, K., and Wiggins, G. A.
(2002a). Algorithms for discovering repeated
patterns in multidimensional representations of
polyphonic music. Journal of New Music Re-
search. To appear. (Draft available online at
http://www.titanmusic.com/papers.html).

Meredith, D., Wiggins, G. A., and Lemström, K.
(2002b). Method of pattern discovery. PCT patent
application number PCT/GB02/02430, UK patent
application number 0211914.7. Applied for by City
University, London and filed on 23 May 2002. (Pri-
ority date: 23 May 2001, draft available online at
http://www.titanmusic.com/papers.html).

Nattiez, J.-J. (1975). Fondements d’une sémiologie de
la musique. Union Générale d’Éditions, Paris.

Rolland, P.-Y. (1999). Discovering patterns in musical
sequences. Journal of New Music Research, 28(4),
334–350.

Ruwet, N. (1972). Langage, Musique, Poésie. Éditions
du seuil, 27, rue Jacob, Paris VI.

Schenker, H. (1954). Harmony. University of Chicago
Press, London. Edited by Oswald Jonas and trans-
lated by Elisabeth Mann Borgese from the 1906 Ger-
man edition.

Temperley, D. (2001). The Cognition of Basic Musical
Structures . MIT Press, Cambridge, MA.

Ukkonen, E., Lemström, K., and Mäkinen, V. (2003).
Sweepline the music! In R. Klein, H.-W. Six, and
L. Wegner, editors, Computer Science in Perspective
(LNCS 2598), pages pp. 330–342.

