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Abstract. In this paper we propose that a probabilistic model of music
listening may be used to predict segmentation boundaries in melodies,,
as perceived by a listener. Existing models of music perception usually
achieve a structural segmentation of a music piece based on Gestalt—
based local discontinuities and on the detection of parallelism. The as-
similation of regularities in music contributes to expectations created
during the course of listening, and is reflected in the listener’s ability (or
inability) to predict what comes next. We conjecture that the expecta-
tions associated with intra-opus musical information provide strong hints
for segmentation points within a piece. We describe an implementation
of this model and analyse a preliminary segmentation experiment, dis-
cussing the limitations and the possible developments of this approach.

1 Introduction

When listening to music, subjects often perceive divisions in the musical dis-
course. The identification of several parts or segments in a piece is an important
step for abstracting musical contents. Several theories have recognised music
segmentation as an important part of music understanding, and have attempted
to explain and formalise how listeners’ intuitions account for the identification
of the pieces’ constituent units such as motives, phrases or sections.

Some of these theories [1-3] employ Gestalt principles to identify discontinu-
ities or create note groupings. Although grouping principles have been found to
have a reasonable explanatory power [4, 5], most theories that use Gestalt prin-
ciples for segmentation often rely on higher-level rules to form larger groupings
or to identify parallelisms.

Deliege and Melén [6] argued for the prototypical nature of parallelism and
showed that descriptions of sections of a musical piece can be formed and retained
by listeners, based on the repetition and salience of small musical patterns.
These small patterns constitute indexes for larger sections and their salience is
enhanced by the familiarity of the listener with the music. Familiarity with a
certain musical material may result from the assimilation of a particular musical
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style or repertoire, or from recent or repetitive audition and memorisation of a
particular piece.

Leonard Meyer affirmed that “suspense is essentially a product of ignorance
as to the future course of events” [7] outlining the relationship between acquired
knowledge and expectation. Later he recognised the affinity between expectation
and information theory and in particular with the notion of entropy [8]. The
unpredictability of an event in a sequence of events, can alter its prominence.
An unpredictable musical event is more noticeable to the listener and therefore
more likely to be remembered. On the same line of thought Huron [9] argues
that to establish feature salience in a musical work, one has to identify those
characteristics that present intratextual or intertextual distinctiveness since “the
mere presence of some element or property does not necessarily make it a good
feature. A good feature must in some ways draw attention to itself”.

Researchers have used the notion of entropy to model and evaluate musical
composition [10,11] or to measure musical learning [12], but to our best knowl-
edge, none have used this concept to model music segmentation.

This paper proposes the use of a probabilistic approach to predict segmen-
tation boundaries in melodies. We argue that musical segments are not always
clearly characterised parts of a musical piece, such as those related by similarity.
In the course of listening, the absence of references during a prolonged temporal
interval, may lead the listener to recall that interval as a segment in the music
for which no clear understanding was experienced. In other words, parts of a
musical piece which, to the listener, lack an identity or a particular character,
may also be identified as distinct segments.

2 Overview of the Proposed Model

2.1 General principles

We view music as a multidimensional phenomenon, where several features (e.g.
pitch related or rhythm related) unfold simultaneously in time. At different mo-
ments within a piece, different musical features may be the source of disconti-
nuities or perceived saliences. A piece of music contains more information than
a listener can process in a single hearing, therefore listening implies choosing
which elements to attend to, from time to time [13].

Krummansl [14] found that in a task of musical segmentation, listeners iden-
tified boundaries mainly on the basis of a combination of several different musical
characteristics. In the absence of evidence to distinguish quantitatively the con-
tribution of different musical features, we propose only to identify which ones are
salient or not salient, at a particular moment. If two or more different features
are found to be salient simultaneously, at a particular point, then they will add
up to constitute a stronger salient moment.

In this work, and as explained previously, we associate feature salience with
expectation. We will use the entropy as a measure of unpredictability associated
with different musical features. Low entropy usually means high predictability



but if a particular feature (e.g. note duration) is highly predictable throughout
the piece then it may well be because it is either highly invariant or because
it follows a monotonous variation pattern. For example if a whole melody is
layered on semi quavers, we can say that rhythm is highly predictable, but it
provides no references for the segmentation of the melody. For this reason we
are not interested in measuring the overall entropy of the model, but rather how
entropy changes along the piece. We conjecture that transitions between high and
low entropy constitute salient moments in a listening experience. Furthermore
we argue that musical parameters with varying entropy along the piece are more
informative than parameters with consistently high or low entropy values.

2.2 N-gram models

The implementation of the model is based on an n-gram grammar. N—gram gram-
mars are n** order Markov models that assume that the probability of occurrence
of a symbol depends on the prior occurrence of n — 1 other symbols. N—gram
models are typically constructed from statistics obtained from a large corpus
of data (usually referred to as the training corpus) using the co-occurrences of
symbols to determine the probabilities of sequences of symbols.

Hence, the probability P(s) of a sequence s = wy...w; of length [ is given by,

l

P(s) = [ P(wilwi=}11) (1)

i=1

where w{ denotes the sequence w;...w; and n is the order of the model 3.

Independently of the size of the training corpus, it is unlikely that all possible
symbol sequences will occur. Data sparseness becomes a problem if, when com-
puting probabilities using Equation 1 some of the terms in the product have zero
probability. Also, if the training corpus is small, and the order of the model is
significantly high, longuer sequences will have relatively lower counts, resulting
in less accurate probabilities.

Several methods, usually referred to as smoothing methods, have been de-
scribed in the literature [15,16] to overcome the data sparseness problem, and
estimate probabilities. In this work we are focusing only on intra-opus informa-
tion meaning that the amount of data to be analysed is substantially lower than
if we were using a larger corpus of pieces, so a linear interpolation smoothing
method [17] was employed. Using linear interpolation the probabilities of a se-
quence of length I can be estimated by a weighted sum of n—gram probabilities
from models of order n <= [. For instance, the probability of a tri-gram is de-
termined by the weighted sum of corresponding uni-gram, bi-gram and tri-gram
probabilities,

P(wk|wk,2, wk,l) = /\1P(wk) + )\QP(wk|wk71) + /\3P(wk|wk,2,wk,1) (2)

where A1 + A2 + A3 = 1 and A\; < A3 < A3 as it is assumed that longer contexts,
being more specific, should have a higher weight.

3 when n > i padding symbols have to be introduced to provide the necessary contexts



2.3 Entropy

The fundamentals of Information Theory (IT) were first introduced in [18], and
set up quantitative ways of measuring the information contained in a message
being transmitted, received, or stored. One of the ways of measuring the quantity
of information of a particular message is to determine its unpredictability or
entropy. For a given N-gram model M, entropy associated with a given context
¢ can be determined by,

H(M)=- 3 Pele)log, Plele) 3)
Ve:(c,e)eM

where e denotes all possible successor symbols of the context c. Contexts
are sequences of size N — 1 where N is the order of the model M. Conditional
probabilities are calculated using Equation 2.

Since we are interested is observing the changes in entropy along a sequence
of symbols, the occurrence of every new symbol in the sequence provides a new
context for which the values of H.(M) can be calculated.

3 A case study

Seeking to compare the proposed model with segmentation data provided by
real listeners we used some data described in a segmentation experiment carried
out by Deliége [19]. In these experiments subjects listened to a melody (the solo
for English Horn, from Wagner’s opera Tristan and Isolde) and had to identify
segmentation points in real-time. Both musically trained and untrained subjects
took part in the experiments. A familiarisation audition of the piece preceded the
auditions during which subjects were asked to identify segmentation boundaries.
The experiments revealed a set of 8 main segment boundaries (identified by most
subjects) and an additional set of 13 weaker boundaries. For the present study
only the stronger boundaries were used for comparison. For full details of the
experimental procedure the reader is referred to [19].

The melody information was translated into an event—based representation.
All events are numbered sequentially and gather information about pitch (Midi
note code), duration and onset time. From these basic event attributes, four
other features were extracted and associated with each event:

— Pitch step (PS): expresses the interval distance to following event in semi—
tones.

— Pitch contour (PC): expresses the sign of the pitch step; takes value -1,41
or 0 if PS is also 0.

— Duration ratio (D R): expresses the ratio between the durations of the present
and the following event.

— Duration contour (DC'): expresses duration ratio changes; takes values -1 if
DR>1,1if DR<1lor0if DR=1.
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Table 1. The first 14 events of the melody and features extracted: pitch step (PS);
pitch change (PC); duration contour (DC) and duration ratio (DR)

No Midi Dur OnSet PS PC DC DR

1 53 2000 0.000 7 1 1 1.250
2 60 2500 2000 3 1 -1 0.200
3 63 0.500 4500 -2 -1 1 3.000
4 61 1.500 5.000 -5 -1 -1 0.333
5 56 0.500 6.000 7 1 1 3.000
6 63 1.500 6.500 -8 -1 -1 0.333
7 55 0.500 8000 5 1 0 1.000
8 60 0.500 8500 -7 -1 0 1.000
9 53 0.500 9.000 5 1 1 3.000
10 58 1.500 9,500 2 1 -1 0.333
11 60 0.500 10.500 -2 -1 1 4.000
12 58 2.000 11.000 -2 -1 0 1.000
13 56 2.000 13.000 -1 -1 -1 0.167
14 55 0.333 15.000 -2 -1 0 1.000
15 53 0333 15333 -2 -1 0 1.000

Table 1 shows an extract of the encoded melody of the Horn solo, with the
additional four attributes.

The values obtained for the attributes PS, PC, DC and DR, constitute four
sequences of symbols from which sequence probabilities can be generated. A
tri-gram, bi-gram and uni-gram model was generated for each one of the four
sequences.

The entropy values were obtained from each one of the models, and for all
events in the melody. In Figure 1 we show the entropy profiles obtained from
a tri-gram model. The vertical grey lines overlapped in the graph indicate the
locations of the stronger boundaries indicated by the listeners in Deliege’s exper-
iment [19]. The standard deviation (stdev) of the entropy is also depicted in the
lower part of each graph. Standard deviation gives a good measure of the spread
of the entropy values along the graph and since we are interested in measuring
the changes in entropy along the piece, the stdev is calculated with a sliding
window. In this experiment we used a fixed size window of 10 events although
we suggest that the size of window could be determined in terms of time and
not in number of events. This would seem perceptually more realistic and the
sliding window, with a fixed duration, could be seen as a short—term memory
time frame within which changes can be perceived by the listener. The number
of events that would fit in this window would depend on the tempo assigned to
the piece. Further research is necessary to corroborate this idea.

In a first observation of the graphs of Figure 1 it seems clear that duration
based features register a much higher entropy variance along the melody than
pitch based features. Following our conjecture, time based features are then
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Fig. 1. Entropy(dotted line) and entropy moving standard deviation (solid line) for PS,
PC, DC and DR wvs. event number. Listeners’ segmentation boundaries are indicated
by grey vertical lines



likely to convey more information to the listener regarding segmentation. In fact
it can be observed that the DR entropy graph exhibits accentuated variations,
many of which occur in the vicinity of the boundaries indicated by listeners.
This is confirmed by Deliége in the analysis of her experimental results, where it
is reported that the listeners’ decision were dominated by Gestalt principles of
proximity which are more evident in the rhythmic content of this melody. The
graphs of PS and PC, although with overall low stdev display different entropy
variation patterns within many of the segments identified by the listeners in
Deliege’s experiment.

At present we do not yet have a method to automatically interpret and
extract these boundaries from the entropy profiles obtained from the melodies.
This part of the model will be contemplated in further developments.

4 Discussion

The use of n—gram models is often criticised for the underlying assumption that
a state depends only on the previous states. This assumption seems to be over—
simplistic if we are analysing musical sequences, however it is known that human
memory limitations impose a limit on the ability to establish large—span temporal
relations. This has been acknowledged in [1, 20] where it has been suggested that
listeners perceive a musical surface by focusing on successive zones, along the
musical piece.

As mentioned before, parallelism has a strong influence in the establishment
of boundaries in a melody so the perception of similarities cannot be ignored if
we want to model segmentation. A probabilistic model, like the one presented
here, can capture some parallelisms but it is limited by the order of the model,
which determines the length of the patterns that can be stored and recalled
as similar. Because only identical sequences are recorded as repetitions, this
probabilistic model can, in principle, only deal with exact similarity. However,
it can be argued that because several features were separated into more general
descriptors (e.g. duration ratio or pitch contour as opposed to absolute duration
or pitch values) we can accommodate some form of approximate similarity. For
example two sequences can have the same relative durations, although different
absolute note durations. Although large patterns cannot be stored as a whole by
a low order model, we argue that parallelism may still be established based on
smaller parts of these patterns. Empirical studies [21] have shown that primacy
effects were present in the recognition of similar patterns, and that patterns are
often remembered by the repetition of smaller patterns, which are often their
initial sections. This evidence supports the conjecture that a short—term memory
model can capture some structural information based on parallelism, provided
there is some regularity in the acquired musical data.

In this work, only intra-opus information was used, meaning that the model
only capture regularities within a given piece. The results shown were obtained
with a model of order 3. As expected, and due to the fairly small set of input
data, increasing the size of the sequences stored by the model decreases the



overall pattern count, and therefore compromising probability estimation. The
use of interpolation and the unfolding of the melodic information in several
features provided additional redundancy but not enough to accommodate very
long context models. Additional experiments are necessary to find out how the
order of the model influences the granularity of the entropy profiles.

The use of inter—opus in conjunction with intra-opus information was sug-
gested in [10], where two separate models are combined to make predictions,
although the way these two context models were actually combined has not
been described in detail. Intuitively, it seems that regularities particular to a
musical piece could override the intuitions resulting from long term established
rules. The long—term model provides the ‘norms’ (obtained from a large cor-
pus of pieces) and the short—term model, obtained from the piece being heard,
provides the listener with confirmations or deviations from the rules.

4.1 Related work

An important contribution of the present approach is that it attempts to predict
segmentation boundaries from non—annotated musical data. Most other related
approaches include style-dependent knowledge or use pre-annotated training
data.

Conklin and Witten’s [10] multiple viewpoint system for generation of Bach
chorales uses a training corpus which includes score based information such as
time signatures, fermatas, location of bar lines, etc. Ponsford et al. [11] use
a probabilistic approach based on N-grams to capture and generate harmonic
sequences, but also assume from the start the use of a score-based music repre-
sentation.

Bod [22] proposes the use of a Markov Grammar to learn and predict phrase
boundaries in folk songs. Learning is based on a training set of pre-annotated
pieces obtained from the Essen folk song database. The phrase boundaries in-
dicated in the Essen folk songs have not been validated with listeners, and the
author acknowledges that the correction of the annotations should preferably
be established by an independent psychological experiment with more than one
subject. This raises the question whether the model is really predicting listen-
ing behaviour or just predicting boundaries according to particular analytical
criteria, reflected in the annotations of the pieces in the database? To answer
this question it would be necessary to test a sample of songs from the Essen
database with listeners, and find out how the phrase boundaries indicated by
listeners would differ from the annotated ones. In short and simple pieces, where
parallelism is more obvious, it is likely that the structural segments perceived
by listeners correspond to the sections obtained by simple analysis of the pieces.
However in longer pieces, and when parallelism is more difficult to establish,
either by the temporal separation between motives or by the subtlety of the
similarities, models should be compared with results obtained by listeners.

Reis’ [12] research aimed to determine to what degree a system without any
a priori stylistic information, is able to gain proficiency in a given musical style,
as measured by its ability to predict the music. The author extends the approach



based on context models [10] to simulate the on-line process of music learning
and capture the stylistic information present in a musical surface. He argues for
a more cognitively pertinent way of inducing the contexts, using Gestalt—based
perceptual cues (e.g. changes of direction, or large jumps in either pitch or time
domain) to restrict the number of sequences that are extracted and stored from
the training set.

There are advantages in including contextual information in an analytical
process. For example, Bod [22] has shown how to improve the performance of
his model by limiting the maximum number of phrase boundaries the parser can
identify within a song (this maximum may be obtained directly from the Essen
database). The drawback of this sort of approach is that the model becomes too
biased towards a particular repertoire, so it is likely that the predictive power
may drop when parsing pieces from other repertoires. In fact, in the particular
case of the Essen folk song database, it is likely that the number of segments
may vary significantly according to the origin or type of the songs.

5 Conclusions

This study suggests that some structural information about a melody can be
associated and induced by changes in expectation. It was found that distinct
changes in entropy associated with different musical features were coincident
with melody segment boundaries indicated by listeners. It was also shown that
the statistical properties of the entropy profiles may be used to indicate which
parts of a melody, or more generally which features of a melody are more infor-
mative and therefore more likely to contribute to the perception of segmentation
boundaries.

A central motivation of this work is to develop a model that can predict
segmentation boundaries by learning from non—annotated data. Preliminary re-
sults reveal that the model has a significant predictive power, concerning the
location of segmentation boundaries and thus encourages further developments
and experimental research.
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