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Abstract

N-gram based models have been used for a variety of musical tasks including computer-assisted
composition, machine improvisation, music information retrieval, stylistic analysis and cognitive
modelling. We present an application-independent evaluation of some recent techniques for improv-
ing the performance of a subclass of n-gram models on a range of monophonic music data. We have
applied these techniques incrementally to eight melodic datasets using cross entropy computed by
10-fold cross-validation on each dataset as our performance metric. The results demonstrate that
significant and consistent improvements in performance are afforded by several of the evaluated
techniques. We discuss the results in terms of previous research carried out in the field of data com-
pression and with natural language and music corpora and conclude by presenting some important
directions for future research.

1 Introduction

Markov models have been applied to a number of musical research tasks including the development of
practical applications and theoretical research. In the former category, we cite models for computer-
assisted composition (Ames, 1989; Assayag et al., 1999; Hall & Smith, 1996), machine improvisation
with human performers (Lartillot et al., 2001) and music information retrieval (Pickens et al., 2003) and
in the latter, stylistic analysis of music (Conklin & Witten, 1995; Dubnov et al., 1998; Ponsford et al.,
1999) and cognitive modelling of music perception (Ferrand et al., 2002; Reis, 1999a,b).

Our goal in the current paper is to investigate the performance of a range of such models on a variety
of monophonic music data in an application independent manner. We are concerned, in particular, with
the application to music data of a particular technique for combining the predictions of Markov models
called Prediction by Partial Match (PPM — Cleary & Witten, 1984) which forms the central component
in some of the best performing data compression algorithms currently available (Bunton, 1997). Outside
the realm of data compression, PPM has been applied to natural language data (Chen & Goodman,
1999) and to music data (Conklin & Witten, 1995). Since its introduction, a great deal of research has
focused on improving the compression performance of PPM models and our specific aim is to evaluate
the performance of these improved models on a range of monophonic music. It is our hope that these
improvements, evaluated here in an application independent manner, may then be applied usefully to
some of the specific musical tasks cited above.

The paper is organised as follows. In §2, we give a general introduction to n-gram modelling as well
as describing the PPM scheme in some detail. The information-theoretic performance metrics we shall
use are also discussed. Much of the background for this research is drawn from the fields of statistical
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language modelling (Manning & Schiitze, 1999) and text compression (Bell et al., 1990) since research
in these fields is at a more mature stage of development than in the musical domain. However, we hope to
demonstrate that practical techniques and methodologies from these fields can be usefully applied in the
modelling of music. As noted above, n-gram models have been applied to a number of musical tasks and
in §3, we discuss research in the musical domain which uses related models and methodologies. The data
and experimental methodology employed are discussed in §4 where we also summarise the cross-product
of PPM features to be evaluated. The results of our experiments are presented in §5 and discussed in §6.
Finally, in §7, we conclude by presenting a number of useful directions for future research.

2 Background

2.1 Sequence Prediction and N-gram Models

For the purpose of describing this research we shall characterise the acquisition of knowledge about
melodic music as a sequence learning problem (Dietterich & Michalski, 1986). The objects of interest
are sequences of events where each event consists of a finite set of attributes and each attribute may
assume a value drawn from some finite alphabet &. The simplified musical surface (Jackendoff, 1987)
with which we shall be concerned consists of events corresponding to musical notes as notated on a score
each of which consists of a single attribute corresponding to the chromatic pitch of the note. We shall use
the notation e/ € &* to denote a sequence of events ¢;...e; where i < j € Nt and &* denotes the set of all
sequences composed of members of § including the empty sequence €. The goal of sequence learning is
to derive from example sequences a model which estimates the probability function p(e i]e"l_l ).

It is often assumed in statistical modelling that the probability of the next event depends only on the
previous n — 1 events, for some n € N*:

pleiley™) = pleilel ).,

Under this assumption, we have an (n — 1)"* order Markov model or n-gram model. An n-gram is a
sequence eéi_n) .1 consisting of a context eé?fn) .1 and a single-event prediction e;. Since the use of a
global order bound imposes assumptions about the nature of the data, the selection of an appropriate » is
an issue when designing and building n-gram models. If the order is too high, the model will overfit the
training data and fail to capture enough statistical regularity; low order models, on the other hand, suffer
from being too general and failing to represent enough of the structure present in the data. The optimal
order for an n-gram model depends on the nature of the data to which it is applied and, in the absence of
specific a priori knowledge about that data, can only be determined empirically.

An n-gram parameter is the probability of the prediction occurring immediately after the context.
The parameters are typically estimated on some corpus of example sequences. There are several different
means of estimating n-gram parameters, the simplest of which is maximum likelihood (ML) estimation
which estimates the parameters as:

i—1
Pl ) = =)
U (i—n)+1/ —
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where ¢(g) denotes the frequency count for n-gram g. In n-gram modelling, the probability of a sequence
of events is expressed, following the chain rule, as the product of the estimated probabilities of the events
(conditional on the identity of the previous n — 1 events) from which it is composed:
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When n > i, at the beginning of the sequence for example, padding symbols must be introduced to
provide the necessary contexts.

Due to data sparseness, problems arise when using fixed order ML models due to the occurrence
of as-yet-unseen n-grams. In particular, if a novel n-gram context is encountered or a symbol occurs
in the data which has not previously appeared after an existing context (the zero-frequency problem —
see Witten & Bell, 1991), the ML estimate will be zero. In these situations, the estimated probability
of a novel n-gram will be too low and consequently the estimated probability of n-grams with non-zero
counts will be too high. Additionally, as we shall see in §2.2, the information theoretic performance
measures that we shall use require that every symbol is predicted with non-zero probability.

In statistical language modelling, a set of techniques known collectively as smoothing are commonly
used to address these problems. The central idea of smoothing is to adjust the ML estimates in order
to generate probabilities for as-yet-unencountered n-grams. This is typically achieved by combining the
distributions generated by an h-gram model with some fixed global order bound h with distributions less
sparsely estimated from lower order n-grams (where n < h). Most existing smoothing techniques can be
expressed using the framework described in Equation 1 (Kneser & Ney, 1995).

1
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For a given context e(l n) +1’ if a given symbol e; occurs with a non-zero count (i.e., c(e,|e (i—n) +1) >

0) then the estimate (x(e,\e is used; otherwise, we recursively backoﬁ to a scaled version of

w+1)

the (n —2)™ order distribution p(el|e (i) +2) where the scaling factor y(e,]e +1) is chosen to ensure

that the conditional probability distribution over the alphabet sums to one: Y.t p(e |e (i—n) +1) 1. The
recursive step is typically terminated with the zeroth order model or by taking a uniform distribution
over § The various smoothing algorithms differ in terms of the techniques employed for computing
(€l|€ (i— n)-H) and 'Y(€,|€ (i— n)-‘rl)
An alternative to backoff smoothing is interpolated smoothing in which the probability of an n-gram
is always estimated by recursively computing a weighted combination of the (n — 1)" order distribution
with the (n — 2)"" order distribution as described in Equation 2.

(el’el n)+1) (€l|€l n)+1)+Y( (i— n)+1)P(ei|€€;n)+2) (2)

Detailed empirical comparisons of the performance of different smoothing techniques have been con-
ducted on natural language corpora (Chen & Goodman, 1999; Martin et al., 1999). One of the results
of this work is the finding that, in general, interpolated smoothing techniques outperform their backoff
counterparts. Chen & Goodman (1999) found that this performance advantage is restricted, in large part,
to n-grams with low counts and suggest that the improved performance of interpolated algorithms is due
to the fact that low order distributions provide valuable frequency information about such n-grams.

2.2 Performance Metrics

There exist many (more or less application dependent) ways of assessing the quality of an n-gram model
and the ultimate evaluation metric can only be the impact it has on a specific application. Here, however,
we are interested in examining the performance of such models in an application neutral manner. It is
common in the field of statistical language modelling to use information theoretic, in particular entropy
based, measures to evaluate statistical models of language. We have employed these metrics in this
research and they are briefly introduced below.

Given a probability mass function p(e € &) = p(x = e) of a random variable x distributed over a
discrete alphabet & = {ej,ea,...,e;} such that the individual probabilities are independent and sum to
one, the entropy H(p) is defined as:
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Shannon’s (1948) fundamental coding theorem states that entropy provides a lower bound on the average
number of binary bits per symbol required to encode an outcome of the variable x. The corresponding
upper bound occurs in the case where each symbol in the alphabet has an equal probability of occurring:

Ve € &, p(e) = m

Hpax(p) = log, [E] “4)

Entropy has an alternative interpretation in terms of the degree of uncertainty that is involved in selecting
a symbol from an alphabet: greater entropy implies greater uncertainty.

In practice, we rarely know the true probability distribution of the stochastic process and use a model
to approximate the probabilities in Equation 3. Cross entropy is a quantity which represents the diver-
gence between the entropy calculated from these estimated probablhtles and the source entropy. Given
a model which assigns a probability of p,,(e ) to a sequence e} of outcomes of X, we can calculate the
cross entropy H,( pm,e{) of model m with respect to event sequence 7. In particular, if we make some
assumptions about the stochastic process which generated the sequence, the cross entropy H,y,( pm,e‘{)
may be calculated as:'

. 1 .
Hm(Pmae{) = —;logzpm(e{)
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Cross entropy approaches the true entropy of the sequence as the length of the sequence () increases.
Since H,,(pm,e]) provides an estimate of the number of binary bits required on average to encode a
symbol in e{ in the most efficient manner and there exist techniques, such as arithmetic coding (Witten
et al., 1987), which can produce near optimal codes, cross entropy provides a direct performance metric
in the realm of data compression. However, cross entropy has a wider use in the evaluation of statistical
models. Since it provides us with a measure of how uncertain a model is, on average, when predicting a
given sequence of events, it can be used to compare the performance of different models on some corpus
of data. In statistical language modelling, cross entropy measures are commonly used:

“For a number of natural language processing tasks, such as speech recognition, machine
translation, handwriting recognition, stenotype transcription and spelling correction, lan-
guage models for which the cross entropy is lower lead directly to better performance.”
(Brown et al., 1992, p. 39).

A related measure, perplexity, is also frequently used in statistical language modelling. The perplexity
Pu(Pm,e ) of model m on sequence e is defined as:

PPy (pm, ) = 21 (ome) ©)

Perplexity provides a crude measure of average size of the set of symbols from which the next symbol is
chosen — lower perplexities indicate better model performance.

UIn particular, it is standard to assume that the process is stationary and ergodic (Manning & Schiitze, 1999). A stochastic
process is stationary if the probability distribution governing the emission of symbols is stationary over time (i.e., independent
of the position in the sequence) and ergodic if sufficiently long sequences of events generated by it can be used to make
inferences about its typical behaviour.



2.3 The PPM Algorithm
2.3.1 Overview

Prediction by Partial Match (Cleary & Witten, 1984) is a data compression scheme the central component
of which is an algorithm for performing backoff smoothing of n-gram distributions. Variants of the PPM
scheme have set the standard in lossless data compression since its introduction (Bunton, 1997). We shall
describe several of these variants in terms of Equations 1 and 2 where the recursive step is terminated with
a model which returns a uniform distribution over . This model is usually referred to as the order — 1
model and allows for the prediction of events which have yet to be encountered.

2.3.2 The Zero-frequency Problem and Escaping

We shall now describe how the probability estimates o (el|e (i—n) ) and y(e,»\eé;ln) .1) in Equations 1
and 2 are computed in PPM models. The problem is usually characterised by asking how we estimate

v(e; |e %) +1) the amount of probability mass to assign to events which are novel in the current context

e'<l._1n) 41 (e,|e (i) +1) is then set such that the distributions sum to one. As noted by Witten & Bell

(1991), there is no sound theoretical basis for choosing these escape probabilities in the absence of
a priori knowledge about the data being modelled. As a result, although several schemes exist, their
relative performance on any particular task can only be determined experimentally. In the following
discussion, t(e{ ) denotes the total number of symbol types, members of &, that have occurred with non-
zero frequency in context e]; and #(e; ) denotes the total number of symbol types that have occurred
exactly k times in context e‘i’ .

Method A (Cleary & Witten, 1984) assigns a frequency count of one to symbols that are novel in the

current context e(l n) .1 and adjusts 0c(e,|e (in) 1) accordingly:
1 _ C(€,|€[ n)+1)
(el‘e (i— n)Jrl) Zeegc(eE;JMH) + 1 (el’e (i— ”)+1) Yececle \e (i—n) +l) +1
As the number of occurrences of the context increases, Y(e;|e! ! ,) decreases and 0c(e,|e ) ap-
(i-n)+ (i—n)+1

proaches the ML estimate.

Method B (Cleary & Witten, 1984) classifies a symbol occurring in a given context as novel unless it
has already occurred twice in that context. This is achieved by subtracting one from the symbol counts

when calculating oc(e, |e ")+ ;) and has the effect of ﬁltering out anomalies. In addition, the appearance

of the type count # (e’ e n) +1) in the numerator of y(e,]e (i) +1) has the effect that the escape probability
increases as more types are observed.
1@ ) clele=t ) =1
— (i=n)+1 _ (i—n)+1
eilé! — eilé! —
( l| (i— n)+1) Zee&ﬁ(e, n)+1) ( l‘ (i— n)+1) Zeeé‘(e, n)+l)

Method C (Moffat, 1990) was designed to combine the more attractive elements of methods A and B.
It is a modified version of method A in which the escape count increases as more types are observed (as
in method B).

‘(e"e(, n)+1)

Z(,E& C(e‘el(l-,ln +1 )+t(el(ijn)+l )

l(el(z 1)1)+1)
1
)

i i— € e =
Zf’eic(e(l ln +l)+t(e(ifn)+l) ( l’ l n)+1)
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One particular smoothing technique called Witten-Bell smoothing, often used in statistical language mod-
elling, is based on escape method C (Manning & Schiitze, 1999).



Method D (Howard, 1993) modifies method B by subtracting 0.5 (instead of 1) from the symbol count

cleilei=! ) in afe;le!

(i—n)+1 ll’l+1)

l ( (t n)+l)

Yeilel; n)+1) - m

<el’e (i— n)+1) =

Method AX (Moffat et al., 1998) is motivated by the assumption that novel events occur according to
a Poisson process model. On this basis, Witten & Bell (1991) have suggested method P which uses the
following escape probability:

tl(e,\e(l n)+l) B tz(e,le, n)+1) B 13(€z|€’l n)+1)
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(e”e (i— n)+1> =
and method X which approximates method P by computing only the first term:

n (e"é(z ln)+])

(e,|e (i— n)+1) - m

However, both of these methods suffer from the fact that when 7, (el\e 0 or 1 (e,\e

(i— n)+1) (i— n)+1)
Yeczc(e |e (i=m)+ |)» the escape probability will be zero (or less) or one respectively. One solution to this
problem, suggested by Moffat et al. (1998) and dubbed method AX (for approximate X), is to simply
add one to the counts and use the singleton type count in method C.

gl (627 1n)+] )+1
Zeei C(ez<’l_—71")+l>+tl (e(z n)+1)+1

¢ e’|e(1 n) +1)

(i—n) +l) Zeey;c(e\e’(, ln D+ (e €l n)+l)+1

(e,]el n)+1) (e,]e
These methods are based on similar principles to Katz backoff (Katz, 1987) one of the more popular
techniques used in statistical language processing.

These various escape methods have been subjected to empirical evaluation in data compression ex-
periments. In general, A and B tend to perform poorly (Bunton, 1997; Moffat et al., 1994; Witten & Bell,
1991), while D tends to slightly outperform C (Bunton, 1997; Moffat et al., 1994) and methods based on
P (e.g., AX) tend to produce the best results (Moffat et al., 1994; Teahan & Cleary, 1997; Witten & Bell,
1991).

2.3.3 Exclusion

Exclusion (Cleary & Witten, 1984) is a technique for improving the probabilities estimated by PPM.
Events which are predicted at higher order contexts do not need to be included in the calculation of lower
order predictions. Exclusion of events which have already been predicted in the higher level context will
have no effect on the outcome (since they have already been predicted) and doing so reclaims a proportion
of the overall probability mass that would otherwise be wasted. Unless explicitly stated otherwise, we
shall assume that exclusion is enabled in all models discussed in the remainder of the paper.

2.3.4 Interpolated Smoothing

We have discussed the difference between backoff and interpolated smoothing in §2.1 and shown how
they can be described within the same framework. While the original PPM algorithm uses a backoff
strategy (called blending), Bunton (1996, 1997) has experimented with using interpolated smoothing
within PPM. The approach is best described by rewriting Equation 2 such that:

count(e;, e ’(7 1n)+1)

(€,|€l n)+l) = ?\’(eéifn)ﬂ) i—1

count (e €l )+1)

(el|el n)-‘rl) = (1 7\'(61(1 ln)-‘rl))



where:

i—1 . i1
count (e; el ) = c(€i|e(i—n)+1) +k if C(ei‘e(i—n)—H) >0
T 0 otherwise
COunt(eéi__ln)-&-l) = Z count (e, eél.__ln)H)

ect: e is not excluded

and k is the initial event frequency count and a global constant (ideally k = 0). The resulting smoothing
mechanism is described by:

count (e;, eél.iln)ﬂ)

x(elt'ifln i— . ;
I B R count (elim) if € ya 7 €
p(e’|e(i*n)+1) - i-1 i1 )
(1 _k(e(ifn)Jrl)) : p(ei‘e(ifn)m)
m otherwise

When using the interpolated smoothing described in Equation 7, it is difficult to ensure that the con-
ditional probability distribution computed sums to one. A simple, though computationally expensive,
solution to this problem is to compute the entire distribution and then renormalise its component proba-
bilities such that they do sum to one.

As noted by Bunton (1996, ch. 6), methods A through D may be described using a single weighting
function A : £ — [0, 1), defined as follows:

count (eél.iln)

AMe ) = “),

i—1
count(e 1 )+ M
(i +1) T 3T 75
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n)t ) as follows:

if we allow the escape method to determine the values of k and a variable d (eé

i—1

A d(el(i_—ln)-&-l) = t(e(i—n)—l—])’ k=0
B: d(e’(l__ln)H) = 1, k=—1,
C: a’(e’(;ln)H) = 1, k=0;
1
. i—1 — ——
D: ey, ) = 2 k=-3.

We note further that method AX may be described within the same framework as follows:

i—1
count(e’(l._n)H)

gl (eiiifln)Jrl )
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Bunton (1996) observes that the key difference between escape methods A through D is the relative
emphasis placed on low order as compared to high order distributions. More emphasis is placed on higher



order distributions as both k and d (e’ ( ) 1) increase in numerical value. Thus, while method B places
the lowest relative emphasis on higher order distributions, method A tends to place the greatest emphasis
on higher order distributions (depending on the value of d(e/ e n) )= t( (in)+ 1)) Methods C and D
fall in between these extremes of emphasis and consistently outperform A and B in data compression
experiments.
Blending drops a term of Equation 7 for events which are not novel by assuming that p(e; |e (i—n) +2)

0. As we saw in §2.1, this is true of backoff versions of interpolated smoothing methods in general. Bun-
ton notes that, as a consequence, the estimates for novel events are slightly inflated while the estimates
for events which are not novel are slightly deflated. Replacing blending with interpolated smoothing
remedies this and yields significant and consistent improvements in compression performance (Bunton,
1996, 1997).

2.3.5 Update Exclusion

Update exclusion (Moffat, 1990) is a modified strategy for updating the n-gram counts in PPM models.
When using the original PPM model with blending and exclusion, the probability of an event which is
not novel in a given context, will be estimated in that context alone without blending the estimate with
lower order estimates. Update exclusion refers to a counting strategy in which the event counts are only
incremented if an event is not predicted in a higher order context. This has the effect that the counts
more accurately reflect which events are likely to have been excluded in higher order contexts. The use
of update excluded counts tends to improve the data compression performance of PPM models (Bell
et al., 1990; Bunton, 1997; Moffat, 1990).

2.3.6 Unbounded Length Contexts

One of the goals of universal modelling is to make minimal assumptions about the nature of the stochastic
processes (or source) responsible for generating observed data. As we discussed in §2.1, n-gram models
make assumptions about the source to the effect that the probability of an event depends only on the
previous n — 1 events. Cleary & Teahan (1997) describe an extension to PPM, called PPM*, which
eliminates the need to impose an arbitrary order bound. The policy used to select a maximum order
context can be freely varied depending on the situation.

A context ¢! is said to be deterministic when it makes exactly one prediction: 7(e! ) = 1. Cleary
& Teahan (1995) have found that for such contexts the observed frequency of novel events is much
lower than expected based on a uniform prior distribution. As a consequence, the entropy of the dis-
tributions estimated in deterministic contexts will tend to be lower than in non-deterministic contexts.
Since the event will have occurred at least as many times in the lowest order matching deterministic
context as any of the other matching deterministic contexts, it will produce the lowest-entropy probabil-
ity distribution (Bunton, 1997). Cleary & Teahan (1997) exploit this in PPM* by selecting the shortest
deterministic matching context if one exists or otherwise selecting the longest matching context. Unfor-
tunately, the original PPM* implementation provided (at best) modest improvement in compression per-
formance over the original order bounded PPM. When combined with interpolated smoothing and update
exclusion, however, PPM* does outperform the corresponding order bounded PPM models in data com-
pression experiments (Bunton, 1997). Furthermore, Bunton (1997) describes an information-theoretic
state-selection mechanism which further improves the compression performance of PPM* models.

As noted by Bunton (1997), PPM*’s state selection mechanism interferes with the use of update
excluded frequency counts since PPM* does not always estimate the probability distribution using the
frequency data from the maximum order matching context. The solution is to use full counts to compute
probabilities for the selected context and update excluded counts thereafter for the lower order contexts
(see Bunton, 1996, 1997, for further details).



2.3.7 Implementation Issues

Since PPM* does not impose an order bound, all subsequences of the input sequence must be stored
which makes for increased demands on computational resources. Suffix-tree representations provide a
space-efficient means of achieving this end (Bunton, 1996; Larsson, 1996). We have implemented our
PPM models as suffix trees using the online construction algorithm described by Ukkonen (1995). The
application of this algorithm to the construction of PPM models was first described by Larsson (1996) and
the construction developed independently by Bunton (1996) is similar to the Ukkonen-Larsson algorithm
in many respects. In addition to being online, these algorithms have linear time and space complexity and,
as demonstrated by Bunton (1996), the resulting models have optimal space requirements (in contrast to
the original PPM* implementation). Since our suffix trees are constructed from more than one sequence,
they are in fact generalised suffix trees which require only minor modifications to Ukkonen’s suffix
tree construction algorithm (Gusfield, 1997). The existence of path compressed nodes in suffix trees
complicates the storage of frequency counts and their use in prediction. We have followed the strategies
for initialising and incrementing the counts employed by Bunton (1996) to address these complications.

2.4 Long- and Short-term Models

In data compression, a model which is typically empty initially is constructed incrementally as more of
the input data is seen. However, experiments with PPM using an initial model that has been derived from
a training text demonstrate that pre-training the model, both with related and with unrelated texts, signif-
icantly improves compression performance (Teahan, 1998; Teahan & Cleary, 1996). A complementary
approach is often used in the literature on statistical language modelling where improved performance is
obtained by augmenting n-gram models derived from the entire training corpus with cache models which
are constructed dynamically from a portion of the recently processed text (Kuhn & De Mori, 1990).

Conklin (1990) has employed similar ideas with music data by using both a long-term model (LTM)
and a short-term model (STM). The LTM parameters are estimated on the entire training corpus and
new data is added to the model after it is predicted on a composition-by-composition basis. The STM,
on the other hand, is constructed online for each composition in the test set and is discarded after the
relevant composition has been processed. The predictions of both models are combined to provide an
overall probability estimate for the current event. The motivation for doing so is to take advantage of
recently occurring n-grams whose structure and statistics may be specific to the individual composition
being predicted.

A simple way of achieving the combination of predictions from the LTM and STM is to use a
weighted average of the individual predictions (Conklin, 1990). Let e € & be the current symbol to
be predicted, M be a set {ltm, stm} containing the LTM and STM and p,,(e) be the probability assigned
to symbol e by model m € M. The weighted mean of the two predictions is:

_ ZmeM mem(e>

ZmeM Wm
Conklin describes a method for calculating the weights, wy;,, and wy,, based on the entropies of the dis-
tributions generated by the LTM and STM such that greater entropy (and hence uncertainty) is associated
with a lower weight. Let P,, be the probability distribution generated by model m. The relative entropy
of a model is:

ple) ®)

H _ H(Pm)/HmaX(Pm) if Hmax(Pm) >0
relative (Pm) = 1 otherwise

where H and H,,,, are as defined in Equations 3 and 4 respectively. The weight of model m is:

Wi = Hyepative (pm) -t



where b € N is a parameter giving an exponential bias towards models with lower relative entropy.
Conklin 1990, pp. 70-72 discusses this weighting mechanism in more detail. The combined use of
long- and short-term models yields better prediction performance than either the LTM or STM used
individually (Conklin, 1990). Finally, Conklin & Witten (1995, p. 61) have used a different scheme,
based on the Dempster-Shafer theory of evidence, for combining the predictions of long- and short-
term models “with some success” but do not provide any details of the scheme or the performance
improvements it yielded.

3 Related Work

N-gram models have been used for music related tasks since the 1950s when they were investigated as
tools for composition and analysis (see e.g., Brooks Jr. et al., 1957; Hiller & Isaacson, 1959; Pinkerton,
1956). Since extensive reviews of this early research exist (Ames, 1987, 1989; Hiller, 1970), we shall
focus here on more recent approaches.

Ponsford et al. (1999), for example, have applied trigrams and tetragrams (without smoothing) to the
modelling of harmonic movement in a corpus of 84 seventeenth century sarabandes. The aim was to
find out how adequate a simple n-gram model would be for the description and generation of harmonic
movement in the style. Higher order structure was represented in the corpus through the annotation of
events delimiting bars, phrases and entire pieces. A number of pieces were generated from the models
and subjected to an informal stylistic analysis. The generated harmonies were “characteristic of the
training corpus in terms of harmony transitions, the way in which pieces, phrases and bars begin and
end, modulation between keys and the relation between harmony change and metre” (Ponsford et al.,
1999, p. 169). The generation of features such as enharmony, which was not present in the corpus, and
weak final cadences was attributed mainly to the use of low order models.

The research most closely related to the present work is that of Darrell Conklin (Conklin, 1990;
Conklin & Witten, 1995) who used PPM to model the soprano lines of 100 of the chorales harmonised
by J.S. Bach. The escape method used was B and both long- and short-term models were employed.
The global order bounds of the LTM and STM were set at 3 and 2 respectively and the predictions
combined using a Dempster-Shafer scheme (see §2.4). One of the central features of this work was the
representation of multiple attributes, or viewpoints, of a melodic sequence. The event space consisted of a
cross-product of basic viewpoints such as chromatic pitch, onset time, duration and so forth. Viewpoints
such as chromatic pitch interval, pitch contour and inter-onset interval were derived from these basic
attributes (derived viewpoints) and could be combined into linked viewpoints which consist of elements
of the cross product of the constituent (basic and derived) viewpoints. Finally, this work also introduced
threaded viewpoints which represent events across larger intervals such as bars and phrases delimited by
fermata.’

Conklin & Witten (1995) describe a number of multiple viewpoint systems consisting of several
PPM models trained on different viewpoints whose predictions were combined in the same manner as
described in §2.4. Several evaluation techniques were employed. First, split-sample validation (see
§4.3) with a training set of 95 compositions and a test set of five compositions was used to compare the
performance of different multiple viewpoint systems. The performance measure was the cross entropy
(see Equation 5) of the test set given the model. While a system consisting solely of a viewpoint for
chromatic pitch yielded a cross entropy of 2.05 bits per event, more complex multiple-viewpoint systems
yielded cross entropy measures as low as 1.87 bits per event. The second means of evaluation was a
generate-and-test approach similar to that used by Ponsford et al. (1999) from which Conklin & Witten
concluded that the generated compositions seemed to be “reasonable” if somewhat normative. Finally,
Witten et al. (1994) conducted an empirical study of the sequential chromatic pitch predictions made by

2Threaded models are often referred to as distance n-grams in the statistical language modelling literature (Huang et al.,
1993).
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human listeners on the same test set of compositions. The entropy profiles derived from the experimental
results for each composition were strikingly similar in form to those generated by the model described
by Conklin & Witten (1995) — the events about which the model was uncertain also proved difficult for
humans to predict.

Hall & Smith (1996) have extended the approach used by Conklin & Witten (1995) to a corpus of 58
twelve-bar blues compositions. The aim was to develop a compositional tool that would automatically
generate a blues melody when supplied with a twelve-bar blues harmonic structure. In order to model
pitch, zero, first and second order models were derived from 48 compositions in the corpus. Separate
first and second order models were derived for each individual chord occurring in the corpus. Rhythm
was represented using an alphabet of short rhythmic patterns (e.g., two semiquavers followed by a qua-
ver) and zero, first and second order models were derived from the training set over this alphabet. When
generating rhythms, each generated pattern was screened by a set of symbolic constraints for stylistic
suitability. The model was evaluated by asking 198 human subjects to judge which of a pair of compo-
sitions (of which one was human- and the other machine-composed) was machine-generated. The data
consisted of the ten remaining compositions in the corpus and ten compositions randomly selected from
the model’s output all of which were played to the subjects over a standard harmonic background. Sta-
tistical analysis of the results demonstrated that the subjects were unable to distinguish reliably between
the human and machine generated compositions.

Reis (1999a) has extended the work of Conklin & Witten (1995) in a different direction through the
incorporation of psychological constraints in n-gram models. In particular, he argues that storing all
n-grams (with order less than the global bound) which occur in the data is highly inefficient and unlikely
to accurately depict the manner in which humans represent melodies. Reis describes a model which seg-
ments the data according to perceptual cues such as contour changes or unusually large pitch or duration
intervals. The order of the n-grams stored by the model is then determined by the sequence of events
back to the previous segmentation point. In the case of ambiguity (e.g., the various segmentation cues do
not converge to a single point), all suggested segmentation possibilities are stored. If a novel n-gram is
encountered during prediction, the distribution delivered by the variable order model is smoothed with a
uniform distribution over the alphabet. The model also incorporates perceptually guided predictions for
more than one step ahead.

The performance of the model was evaluated on the chorale dataset used by Conklin & Witten (1995)
and German folk melodies from the Essen Folk Song Collection (Schaffrath, 1992, 1994) using entropy
as the performance metric with a split sample experimental design. The results demonstrated that the
model failed to outperform that of Conklin & Witten (1995). In spite of this, Reis’s work is useful since
it addresses the question of which segmentation and modelling strategies work best when model-size is
limited. In particular, he reports the results of an investigation of the predictions of the model when the
(perceptually inspired) contexts were shifted. On a set of 205 German folk songs he found that while
shifts of between one and ten notes always reduced performance relative to non-shifted contexts, shifts
of one note and shifts greater than six produced better prediction than other shifts. Reis suggests that
the relatively good performance using single note shifts may be explained by a degree of uncertainty as
to exactly where a grouping boundary occurs (i.e., is a large melodic interval included in the preceding
group or at the beginning of the following group). The improved performance with longer shifts was
attributed to the fact that the average length of the suggested segments was 6.7 notes.

We turn now to more distantly related approaches which we include because they have been used
to tackle the same basic task — prediction of an event given a context of immediately preceding events.
Assayag, Dubnov and their colleagues (Assayag et al., 1999; Dubnov et al., 1998; Lartillot et al., 2001)
have experimented with using an incremental parsing algorithm based on the Lempel-Ziv dictionary
compression algorithm (Ziv & Lempel, 1978) in the modelling of musical style. The incremental parsing
algorithm adaptively builds a dictionary of sequences as follows. For each new event, it appends the
event to the current contender for addition to the dictionary (initially the empty sequence €). If the
resulting sequence occurs in the dictionary, the count associated with that dictionary entry is incremented;
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otherwise the sequence is added to the dictionary and the current contender is reset to €. The algorithm
then progresses to the next input event. During prediction, an order bound is specified and ML estimated
probabilities are used to predict events in a context. When the context does not appear in the dictionary
the longest suffix of that context is tried. The IP algorithm has been used successfully, with certain
improvements, for the classification of polyphonic music by stylistic genre (Dubnov et al., 1998) and for
polyphonic improvisation and composition (Assayag et al., 1999; Lartillot et al., 2001).

Lartillot et al. (2001) have also experimented with another technique for constructing variable length
Markov models called Prediction Suffix Trees (PST). The algorithm for constructing a PST described by
Ron et al. (1996) and used by Lartillot et al. (2001) is offline and operates in two stages: first, a suffix tree
is constructed from all subsequences of the input sequence less than a global order bound. Each node
in the tree is examined and pruned unless for some symbol in the alphabet, the estimated probability
of observing that symbol at the node exceeds a threshold value and is significantly different from the
estimated probability of encountering that symbol after the longest suffix of the sequence represented by
that state. Lartillot et al. (2001) have derived PSTs from music in a range of different styles and generated
new pieces with some success. Trivifio-Rodriguez & Morales-Bueno (2001) have derived PSTs to model
multiple attributes of the chorale melodies used by Conklin & Witten (1995). They used their models
to generate new melodic sequences which have similar statistical properties to the original chorales and
which human listeners cannot reliably distinguish from the original chorales.

Mozer (1994) argues that transition table approaches (such as the use of n-grams and other Markov
models) suffer from two fundamental problems in terms of modelling musical composition: first, an event
cannot predict a note that is not its immediate successor without knowledge of the intervening notes; and
second, the symbolic representation used does not facilitate generalisation from one musical context to
perceptually similar contexts. In order to overcome these problems, he developed a model based on a
recurrent artificial neural network (RANN) and used psychoacoustic constraints in the representation of
pitch and duration. When trained and tested on sets of simple artificial pitch sequences with a split-
sample experimental paradigm, the RANN model outperformed digram models. However, the results
were less than satisfactory when the model was trained on a set of melodic lines from ten compositions by
J.S. Bach and used for generation: “While the local contours made sense, the pieces were not musically
coherent, lacking thematic structure and having minimal phrase structure and thematic organisation”
(Mozer, 1994, p. 273). The neural network architecture appeared unable to capture the higher level
structure in these longer pieces of music.

4 Experimental Methodology

4.1 Model Parameters

A PPM model has been implemented in Common Lisp such that each of the variant features described
in §2.3 may be independently selected as parameters to the top-level call. We shall use the following
shorthand to refer to each of the model parameters:

Model type: indicated by 'LTM’ and *STM’ for the long- and short-term models respectively while
"LTM+’ indicates a long-term model in which new data is added to the LTM online as each new
event is predicted;’

Escape method: indicated explicitly by "A’, 'B’, °C’, ’D’ or "X’ (the latter as a shorthand for method
AX);

Order bound: indicated by an integer or °*’ if unbounded;

3We have chosen to add new data to the LTM on an event-by-event basis rather than the composition-by-composition basis
adopted by Conklin (1990).
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Update exclusion: the use of update excluded counts is indicated by "U’ — the default does not use
update excluded counts;

Interpolated smoothing: PPM’s blending is the default while the use of interpolated smoothing is in-
dicated by an 'T’.

Thus, for example, a PPM long-term model with escape method C, unbounded order, update exclusion
enabled and interpolated smoothing is denoted by 'LTMC*UI’. When it is clear which model is being
referred to, we shall, for the sake of readability, drop the model type. When combined with a short-term
model with the same parameters, the model would be denoted by 'LTMC*UI—STMC*UI’ (for readabil-
ity the two models are separated by a dash). It will be clear that the space of possible parameterisations
of the model is very large indeed (even when we limit the range of possible order bounds). As a conse-
quence of this large parameter space, we have applied our techniques incrementally, typically taking the
best performing model in one experiment as the starting point for the next.

4.2 Data

The aim of this research was to assess the performance of PPM variants over a range of different musical
styles. The datasets used were all obtained in the **kern format (Huron, 1997) from the Centre for
Computer Assisted Research in the Humanities (CCARH) at Stanford University, California (see http:
//www.ccarh.org) and the Music Cognition Laboratory at Ohio State University (see http://kern.
humdrum. net). During preprocessing, tied notes were collapsed together and the chromatic pitch of each
event was converted into a MIDI note number where 60 represents middle C. Each composition therefore
consists of a sequence of integers each of which represents a chromatic pitch.

The datasets themselves contain purely melodic music. The first is a collection of 152 folk songs
and ballads from Nova Scotia, Canada collected by Helen Creighton between 1928 and 1932 (Creighton,
1966). The dataset was encoded in the **kern format by Craig Sapp and is freely available from the
Music Cognition Laboratory at Ohio State University. The second dataset used is a subset of the chorale
melodies harmonised by J.S Bach (Riemenschneider, 1941). A set of 185 chorales (BWV 253 to BWV
438) has been encoded by Steven Rasmussen and is freely available in the * *kern format from CCARH.
The remaining datasets come from the Essen Folk Song Collection (EFSC — Schaffrath, 1992, 1994).
The collection comprises 6,252 (mostly) European folk melodies collected and encoded under the super-
vision of Helmut Schaffrath at the University of Essen in Germany between 1982 and 1994. A dataset
containing all the compositions in the collection encoded in the **kern format is published and dis-
tributed by CCRAH (Schaffrath, 1995). An additional dataset of 2580 Chinese folk melodies is available
on request. The six datasets from the EFSC used in this research contained respectively 91 Alsatian
folk melodies, 119 Yugoslavian folk melodies, 93 Swiss folk melodies, 104 Austrian folk melodies, 213
German folk melodies (from dataset kinder) and 237 Chinese folk melodies (from dataset shanxi).

| ID | Description | No. Compositions | No. Events | Mean Events/Composition | [g] |
0 | Canadian folk songs/ballads 152 8553 56.270 25
1 | Chorale melodies 185 9227 49.876 21
2 | Alsatian folk songs (EFSC) 91 4496 49.407 32
3 | Yugoslavian folk songs (EFSC) 119 2691 22.613 25
4 | Swiss folk songs (EFSC) 93 4586 49.312 34
5 | Austrian folk songs (EFSC) 104 5306 51.019 35
6 | German folk songs (EFSC) 213 8393 39.403 27
7 | Chinese folk songs (EFSC) 237 11056 46.650 41

Table 1: Melodic datasets used in this research.
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ID Training set Test set
Mean No. Compositions | Mean No. Events | Mean No. Compositions | Mean No. Events

0 136.8 7697.7 15.2 855.3

1 166.5 8304.3 18.5 922.7

2 81.9 4046.4 9.1 449.6

3 107.1 24219 11.9 269.1

4 83.7 4127.4 9.3 458.6

5 93.6 4775.4 10.4 530.6

6 191.7 7553.7 21.3 839.3

7 213.3 9950.4 23.7 1105.6

Table 2: The average sizes of the resampling sets used for each dataset.

Each dataset is assigned a natural ID as shown in Table 1 and will be referred to henceforth by
this ID. Table 1 also contains more detailed information about each dataset, including the number of
compositions and events contained in the dataset and the number of chromatic pitches from which the
dataset is composed.

4.3 Performance Evaluation

Many methods have been used to evaluate the performance of statistical models of music, some of
which have been described in §3: the analysis-by-synthesis method used by Hall & Smith (1996) and
Trivifio-Rodriguez & Morales-Bueno (2001); comparison of human and machine prediction performance
(Witten et al., 1994); single-sample Bayesian methods such as Minimum Description Length (Conklin,
1990); and the resampling approach using entropy as a measure of performance as used by Conklin
& Witten (1995) and Reis (1999a). We follow the latter approach for two reasons: first, entropy has
an unambiguous interpretation in terms of model uncertainty on unseen data (see §2.2); and second,
entropy bears a direct relationship with performance in compression and indirectly correlates with the
performance of n-gram models on practical natural language tasks and is widely used in both these fields
(see §2.2). These factors support its use in an application independent evaluation such as this.

Conklin & Witten (1995) used a split-sample (or held-out) experimental paradigm in which the data
is divided randomly into two disjoint sets, a training set and a test set; the n-gram parameters are then
estimated on the training set and the cross entropy of the test set given the resulting model is computed
using Equation 5. Conklin & Witten used a training set of 95 melodies and a test set of 5 melodies.
Although commonly used, split-sample validation suffers from two major disadvantages: first, it reduces
the amount of data available for both training and testing; and second, with small datasets it provides
a biased estimate of the true entropy of the corpus. A simple way of addressing these limitations is to
use k-fold cross-validation (Dietterich, 1998; Mitchell, 1997) in which the data is divided into k disjoint
subsets of approximately equal size. The model is trained k times each time leaving out a different subset
to be used for testing and an average of the k cross entropy values thus obtained is then computed.

Since the datasets used are quite small and initial experiments demonstrated a fairly large variance
in the entropies computed from different validation sets, we have used 10-fold cross-validation for each
dataset in all experiments. The average sizes of these sets are shown in Table 2. In machine learning,
differences in model performance as assessed by resampling techniques, such as cross-validation, are
often analysed for significance using statistical tests such as the t-test (Dietterich, 1998; Mitchell, 1997).
We have followed this approach by comparing the performance of some of our improved models with
our emulation of the model developed by Conklin & Witten (1995) as reported in §5.4.
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Figure 1: The performance of the LTM with varying escape method and global order bound.
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Figure 2: The performance of the STM with varying escape method and global order bound.
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[Dataset | C2 C2U C21 C2Ul| D2 D2U D2l D2UI| X2 X2U X2I X2Ul

0 2933 2959 2904 3.127 | 2935 2951 2.885 2967 | 2913 2928 2.887 2.908
1 2.585 2595 2563 2748 | 2.577 2581 2.547 2608 | 2.557 2562 2.544 2.554
2 3216 3.204 3.110 3.417 | 3.252 3.208 3.142 3.220 | 3.207 3.161 3.166 3.129
3 2.882 2890 2.804 3.179 | 2.892 2.881 2.791 2954 | 2.880 2.870 2.824 2.829
4 3276 3.248 3.192 3.483 | 3.315 3250 3.220 3.278 | 3.312 3.231 3.277 3.201
5 3470 3.480 3.385 3.708 | 3.526 3.485 3.431 3.509 | 3.518 3.455 3.485 3.429
6 2.620 2.665 2613 2.897 | 2.622 2.654 2599 2731 | 2.608 2.642 2.596 2.633
7 3.123  3.157 3.083 3.423 | 3.137 3.145 3.094 3.203 | 3.121 3.123 3.111 3.111
Average | 3.013 3.025 2957 3.248 | 3.032 3.019 2964 3.059 | 3.014 2997 2986 2974

Table 3: Performance of the LTM with a global order bound of two.

5 Results

5.1 Global Order Bound and Escape Method

Our first experiments address the question of how the performance of PPM models is affected by changes
in the global order bound. We have tested both the LTM and STM independently with all five escape
methods with global order bounds ranging from zero to 14. The results for the LTM and STM are shown
in Figures 1 and 2 respectively. The general U-shape of the curves is quite typical; while increasing the
global order bound provides the model with more specific contextual information with which to make its
predictions, the higher order contexts are also more likely to fail to produce a prediction. Therefore, the
model will escape down to lower order models more frequently, thereby wasting more of the probability
mass available on apportioning escape probabilities. As the global order bound is increased beyond a
certain point this negative influence tends to dominate and performance decreases (Teahan, 1998). Note,
however, the relatively shallow worsening of performance of the STM (as compared with the LTM) as
the global order bound is increased beyond its optimal value. It seems likely that due to the short length
of most of the compositions in the datasets (see Table 1), the models rarely encounter matching contexts
longer than about five events and, as a consequence, increasing the global order bound beyond this value
has little effect on model performance.

Note from the graphs that, for both the LTM and STM, escape methods A and B perform relatively
poorly and escape method C outperforms the others. Methods A and B tended to perform relatively
poorly in all the experiments performed, as they have in data compression experiments (Bunton, 1997).
As a consequence, they are not considered further in this paper. The optimal global order bound to use
is highly dependent on the amount and character of the data being used (Bunton, 1997). As Figures 1

| Dataset | C5 C5U C51 C5UI| D5 D5SU D3I D5UI|[ X4 X4U X4 X4UI

0 3.017 3.046 2988 2993 | 3.068 3.048 3.049 2.995 | 3.081 3.070 3.029 2.983
1 3.170 3209 3.138 3.149 | 3.218 3.214 3.194 3.153 | 3.198 3.204 3.162 3.121
2 3.120 3.141 3.106 3.104 | 3.175 3.140 3.171 3.107 | 3.197 3.178 3.156 3.106
3 3463 3.488 3466 3.463 | 3498 3.491 3516 3.470 | 3.440 3.467 3.432 3411
4 3.146 3.178 3.134 3.142 | 3.196 3.176 3.194 3.147 | 3.214 3207 3.175 3.139
5 3264 3.281 3.255 3.252 | 3316 3.280 3.317 3.257 | 3.343 3317 3.303 3.255
6 2735 2759 2701 2706 | 2.780 2.7755 2755 2.704 | 2.841 2.856 2755 2.742
7 3434 3437 3426 3.406 | 3.504 3.446 3.504 3.417 | 3.511 3466 3.485 3.402
Average | 3.169 3.192 3.152 3.152 | 3.220 3.194 3.213 3.156 | 3.228 3.220 3.187 3.145

Table 4: Performance of the STM with a global order bound of five (escape methods C and D) or four
(escape method AX).
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[Dataset | C* C*U__C*1__C*UI| D* D*U DI DUl | X* X*U X*1_ X*UI |

0 3.094 3.236 2.861 3.234 | 3.180 3.247 2930 3.098 | 3.072 3.153 2.933 2.993
1 2669 2.843 2444 2.869 | 2.708 2.839 2473 2724 | 2.648 2812 2477 2.651
2 3336 3.407 3115 3.470 | 3.454 3.424 3230 3.308 | 3.320 3.315 3.230 3.166
3 2937 3.032 2.721 3.188 | 3.004 3.040 2.761 2.998 | 2.965 3.028 2.809 2.862
4 3.176  3.199 3.010 3.316 | 3.293 3.205 3.119 3.147 | 3.263 3.176 3.187 3.056
5 3515 3.550 3.340 3.645 | 3.665 3.562 3.486 3.488 | 3.606 3.482 3.542 3.370
6 2604 2779 2428 2926 | 2.681 2780 2468 2739 | 2.614 2748 2.480 2.593
7 3318 3.449 3105 3.556 | 3.395 3.434 3.188 3.347 | 3.298 3.348 3.189 3.205
Average | 3.081 3.187 2.878 3.275 | 3.172 3.191 2957 3.106 | 3.098 3.133 2981 2.987

Table 5: Performance of the LTM with Unbounded order.

and 2 respectively demonstrate, the LTM operates best with a global order bound of two, regardless of
the escape method used, while the STM performs best with a global order bound of five with escape
methods D and C and a global order bound of four with escape method AX.

5.2 Interpolated Smoothing and Update Exclusion

In our next experiments, we investigated the effects that using update excluded counts and interpolated
smoothing have on the performance of PPM models with optimal global order bounds as derived in the
previous experiment. Thus we have tested the STM and LTM with escape methods C, D and AX with
global order bounds of two for the LTM and five (escape methods C and D) or four (escape method AX)
for the STM. We have applied the use of update excluded counts and interpolated smoothing to these
models both individually and in combination. The results for the LTM and STM are shown in Tables 3
and 4 respectively.

Consider first the results for the LTM shown in Table 3. Perhaps the most striking result is that
interpolated smoothing applied in isolation improves performance for all datasets and escape methods.
The best performing models on any given dataset use interpolated smoothing in isolation and, as in the
previous experiment, escape method C tends on average to outperform methods D and AX. The results
for update exclusion are, in general, less clear cut. The use of update exclusion alone improves average
model performance for escape methods D and AX but not for C (although the margin is small and
performance is improved for datasets 2 and 4). The combination of update exclusion and interpolated
smoothing tends to impair performance, compared with the performance of models using either technique
in isolation, for escape methods C and D; the slight average performance improvement with escape
method AX derives from the improved performance on datasets 2, 4 and 5.

Turning now to the results for the STM shown in Table 4, we note that interpolated smoothing

| Dataset | C* C*U C*I C*UI| D* D*U D* D*UI| X* X*U X X*UI|

0 3.008 3.046 2983 2991 | 3.060 3.055 3.045 3.000 | 3.063 3.060 3.020 2.977
1 3.170 3.211 3.139 3.150 | 3.223 3.226 3.201 3.161 | 3.191 3.194 3.162 3.117
2 3.105 3.135 3.097 3.098 | 3.161 3.144 3.162 3.109 | 3.168 3.157 3.140 3.090
3 3459 3491 3463 3.465 | 3495 3.500 3.514 3.477 | 3430 3.465 3.427 3.411
4 3136 3.180 3.126 3.144 | 3.186 3.190 3.188 3.158 | 3.194 3.203 3.165 3.137
5 3254 3279 3248 3.249 | 3306 3.286 3.311 3.261 | 3.317 3.301 3.289 3.244
6 2721 2753 2.693 2701 | 2767 2759 2.748 2707 | 2.814 2.837 2742 2.731
7 3432 3446 3426 3.414 | 3.506 3.469 3.508 3.437 | 3.501 3.467 3.482 3.406
Average | 3.161 3.192 3.147 3.152 | 3.213 3.203 3.210 3.164 | 3.210 3.211 3.179 3.139

Table 6: Performance of the STM with Unbounded order.
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Dataset | STMC*I | LTMC*I | LTM+C*I LTM+C*—STMC*I
b=0 b=1 b=2 b=3 b=4 b=5 b=6  b=16 b=32
0 2.983 2.861 2.655 2495 2475 2468 2469 2474 2482 2491 2564 2.608
1 3.139 2.444 2.375 2396 2363 2347 2342 2342 2346 2352 2412 2455
2 3.097 3.115 2712 2554 2541 2540 2548 2559 2571 2584 2.677 2730
3 3.463 2721 2.602 2619 2597 2.588 2589 2595 2.604 2614 2714 2791
4 3.126 3.010 2.621 2484 2461 2454 2457 2465 2474 2485 2560 2.610
5 3.248 3.340 2.833 2.659 2.649 2651 2661 2.675 2690 2706 2.816 2.880
6 2.693 2.428 2.237 2153  2.120 2106 2102 2104 2.109 2116 2.176 2212
7 3.426 3.105 2.881 2.694 2.680 2.681 2691 2705 2720 2735 2.841 2902
Average 3.147 2.878 2.614 2507 2486 2.479 2482 2490 2500 2510 2595 2.648

Table 7: Performance of the best performing LTM, STM and combined models with variable bias.

applied in isolation tends to improve performance though with less consistency across datasets and escape
methods than it does with the LTM. By contrast, update exclusion (applied in isolation) improves average
performance when used with escape methods D and AX but impairs performance with escape method
C. Even more striking is the finding that the best average performance for each of the three escape
methods is obtained using a combination of interpolated smoothing and update exclusion. However,
the improvement over models using interpolated smoothing in isolation is much more pronounced for
escape methods D and AX than for C where improvement is obtained for datasets 2, 3, 5 and 7 only. The
model with best average performance uses escape method AX with update exclusion and interpolated
smoothing.

5.3 Comparing PPM and PPM* Models

In the next set of experiments, we investigated the effect that the use of update excluded counts and inter-
polated smoothing have on (unbounded order) PPM* models with a view to comparing the unbounded
models with their order-bounded counterparts. As in the previous experiments, we have tested the STM
and LTM with escape methods C, D and AX and applied the use of update excluded counts and inter-
polated smoothing to these models both individually and in combination. The results for the LTM and
STM are shown in Tables 5 and 6 respectively and exhibit broadly similar patterns to the corresponding
order bounded results shown in Tables 3 and 4.

Considering first the results for the LTM shown in Table 5, we note that as in the order bounded
experiment, interpolated smoothing (applied in isolation) universally improves performance. The use
of update exclusion (applied in isolation) universally impairs performance except in combination with
escape methods D and AX on datasets 2, 4 and 5. In combination with interpolated smoothing, up-
date exclusion also universally impairs performance except in combination with escape method AX on
datasets 2, 4 and 5. The trend for escape method C to outperform the other methods was stronger here
than in the order bounded experiment and the best performing model on all datasets used interpolated
smoothing and escape method C. Although the use of unbounded orders fails to consistently improve
performance when the default blending scheme is used, the combination with interpolated smoothing
does lead to consistent performance improvements over the corresponding order bounded models.

Turning now to the results for the STM shown in Table 6, we note that, as in the case of the order
bounded STM results, interpolated smoothing applied in isolation tends to improve performance. The
effect of update exclusion, both in isolation and in combination with interpolated smoothing, tends to be
highly dependent both on the dataset and the escape method used. As in the order bounded experiment,
escape methods D and AX tend to combine more fruitfully with update exclusion than method C. The
models with best average performance for the former escape methods are obtained with a combination of
update exclusion and interpolated smoothing. As in the order bounded experiment, the model with best
average performance uses escape method AX with update exclusion and interpolated smoothing and this
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| Dataset | LTM+B3—STMB2 LTM+C3—STMC2 LTM+C*—STMC* LTM+C*I—STMC*I |

0 2.905 2.613 2.562 2.468
1 2.676 2.488 2.460 2.347
2 2.997 2.689 2.616 2.540
3 2.934 2.698 2.665 2.588
4 2.974 2.640 2.495 2.454
5 3.233 2.819 2.698 2.651
6 2.555 2.270 2.158 2.106
7 3.111 2.796 2.793 2.681
Average 2.923 2.627 2.556 2.479

Table 8: Performance improvements to our emulation of the model used by Conklin & Witten (1995).

model outperforms its order-bounded counterpart.

5.4 Combining the Long- and Short-term Models

We now turn to the combined performance of the LTM and STM whose predictions are combined as
described in §2.4. In general we have followed an approach in which the best performing models at any
given stage are selected for further experimentation. Accordingly, we chose the LTMC*I model for use
in these experiments. However, it was found that although an STMC*I model yielded better performance
than a STMX*UI model in combination with this LTM even though the latter outperformed the former
when used in isolation. This finding in combination with the principle of Occam’s razor led us to select
an STMC*I model over an STMX*UI model for use in these experiments.

The results of this experiment are shown in Table 7. The first two columns respectively show the
performance of the STMC*I and LTMC*I models used in isolation. The third column demonstrates the
improved performance afforded by an LTM+C*I model in which events are added online to the LTM
as they are predicted (see §2.4). The remainder of Table 7 shows the results obtained by combining the
STMC*I model with the LTM+C*I model with a range of different values for the weighting bias b. As
can be seen, a combined LTM—STM model is capable of outperforming both of its constituent models.
The results also demonstrate that optimal average performance is achieved with the bias set to two.

5.5 Opverall Performance Improvements

To illustrate more clearly the performance improvements obtained with the PPM variants discussed in
this paper, we have successively applied escape method C, unbounded orders and interpolated smoothing
to an emulation of the model used by Conklin & Witten (1995) which is described in our framework as
LTMB3—STMB2 (see §2).* The results are shown in Table 8. Paired t-tests confirmed the significance
of the improvements afforded by incrementally applying escape method C [r = 31.128,df =79,p <
0.001], unbounded orders [t = 9.018,d f =79, p < 0.001] and interpolated smoothing [r = 18.281,df =
79, p < 0.001]. The tests were performed over all 10 resampling sets of each dataset (n = 80) results for
which are not shown in Table 8. The combined effect of the techniques applied in the LTMC*[—STMC*I
model is a 15% improvement in average model performance as measured by cross entropy.

4At the time of writing, there was insufficient information to enable a precise replication of the experiments described by
Conklin & Witten (1995). Any discrepancy between the results reported here for dataset 1 and those of Conklin & Witten (1995)
may be attributed to several factors: first, Conklin & Witten used a different set of 100 chorales which is partially disjoint from
the set of 185 used here; second, the larger alphabet resulting from the increased size of the dataset; third, the use here of ten-
fold cross-validation with an average of 18.5 compositions in the test set compared with the split sample paradigm employed
by Conklin & Witten with a training set of 95 and test set of 5 compositions; and finally, the use of a Dempster-Shafer scheme
by Conklin & Witten for combining the predictions of the LTM and STM as compared with the weighted average employed
here.
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6 Discussion

Before discussing the results presented in §5, some words on the methodology employed are in order. Our
goal was to demonstrate that a number of techniques improve the prediction performance of PPM models
on monophonic music data. We have approached this task by using cross entropy of the models as our
performance metric and applying ten-fold cross validatory resampling on eight monophonic datasets.
Since we have been concerned with optimising average performance over all eight datasets, the best
performing models selected in some experiments (e.g., the global order bound experiments described
in §5.1) will not necessarily correspond to the best performing models on any single dataset. However,
these best performing models increase our confidence that the model will perform well on a given dataset
without requiring further empirical investigation of that dataset: i.e., we need less information about the
dataset to be confident of improved performance.

We have applied the variant techniques incrementally, typically taking the best performing model in
a given experiment as the starting point for the next experiment. For example, in §5.4 we took the LTM
and STM which yielded best performance independently as the models to combine. Although there is no
guarantee that the resulting model reflects the global optimum in the space of possible LTM and STM
parameterisations, our aim was to demonstrate that some variant techniques can improve the performance
of PPM models and consequently our interest is in the relative, rather than absolute, performance of the
PPM variants. In this regard, we have demonstrated that the combined use of three variant techniques
affords significant and consistent performance improvements of 15% on average over the model used by
Conklin & Witten (1995). We shall now discuss in further detail the implications of the experimental
results for each of the variant techniques in turn.

Escape Method Asnoted in §2.3.2, there is no principled a priori means of selecting the escape method
(the probability to assign to events which have never arisen in a given context before) in the absence of
knowledge about the data. In our experiments, escape methods A and B were consistently outperformed
by C, D and AX and C fairly consistently outperformed both D and AX (although method AX performed
well with the short-term model). These results are broadly in agreement with those obtained in data
compression experiments (Bunton, 1996; Moffat et al., 1994; Witten & Bell, 1991). Escape method C is
the most commonly used method when Witten-Bell smoothing is used in statistical language modelling
(Manning & Schiitze, 1999).

Interpolated Smoothing The use of interpolated smoothing consistently improves model performance
(by comparison with PPM’s default blending strategy) regardless of the dataset and combination with
other variant techniques. This is consistent with results obtained in experiments in data compression
(Bunton, 1997) and on natural language corpora (Chen & Goodman, 1999). The reason appears to derive
from the fact that backoff smoothing (of which blending is an example) consistently underestimates the
probabilities of non-novel events (Bunton, 1997) for which the low order distributions provide valuable
information. For natural language corpora, this effect is particularly strong for n-grams with low counts
(Chen & Goodman, 1999).

Update Exclusion While update exclusion generally improves the performance of PPM models in
data compression experiments (Bunton, 1997; Moffat, 1990), the results in our experiments were more
equivocal. In general, the effects of update exclusion appeared to be highly sensitive to factors such as
the dataset, escape method and model type (LTM or STM). In particular, escape methods AX, D and C
respectively benefited less from the use of update excluded counts. Furthermore, the LTM appeared to
benefit rather less from update exclusion than did the STM. Finally, when update exclusion did improve
average performance, it tended to be the result of improvements on a restricted set of datasets. These
findings are not entirely without precedent. The results presented by Bunton (1997) demonstrate that,
although it improves average compression performance, update exclusion impairs performance for some
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of the test files and that escape method C benefits slightly less from the use of update excluded counts
than method D.

Unbounded Orders The use of unbounded orders, as described in §2.3.6, failed to yield consistent
improvements in performance for both the LTM and STM except when used in combination with in-
terpolated smoothing. This combination of unbounded orders and interpolated smoothing consistently
improves the performance of the best performing order bounded models with interpolated smoothing.
These results agree with those obtained in data compression experiments (Bunton, 1997). This is likely
to be due to the fact that the optimal order bound varies between datasets. As noted by Bunton (1997,
p- 90), order bound experiments “provide more information about the nature of the test data, rather than
the universality of the tested algorithms.” The advantage of PPM* is that it requires fewer assumptions
about the character of the data used.

Combined LTM and STM  As expected from previous research (Conklin, 1990), combining the pre-
dictions of the LTM and STM improves model performance by comparison to that of either model used
independently. Curiously, Conklin (1990) found that performance continued improving when the bias b
was set to values as high as 128 and greater. In our experiments, the optimal bias setting ranged from
one to four depending on the dataset. Further experiments with the bias set to values as high as 32 only
yielded further reduction in performance.

7 Summary and Conclusions

7.1 Summary

Our goal in this research was to evaluate, in an application independent manner, the performance im-
provements resulting from the application of a number of variant techniques to a class of n-gram models.
Some potential applications of the statistical models we develop are cited in §1 while related work that
has been carried out recently with music has been reviewed in §3; we have introduced n-gram mod-
elling in general (§2.1) as well as the information theoretic performance measures that have been used
(§2.2). Particular attention was given to PPM models in §2.3, where we described in some detail a num-
ber of techniques that have been used to improve the performance on PPM models. These techniques
include a range of different escape methods (§2.3.2), the use of update excluded counts (§2.3.5), interpo-
lated smoothing (§2.3.4), unbounded orders (§2.3.6) and combining the predictions of a LTM and STM
(§2.4). We have applied these techniques incrementally to eight melodic datasets using cross entropy
computed by 10-fold cross-validation on each dataset as our performance metric, as described in §4.
The results demonstrated the consistent and significant performance improvements afforded by the use
of escape method C (although method AX also performed well with the short-term model), unbounded
orders, interpolated smoothing and combining long- and short-term models (see §5). Finally, in §6 we
have discussed the results in terms of previous research carried out in the field of data compression and
with natural language and music corpora.

7.2 Directions for Future Research

By way of conclusion, we would like to present some directions that we feel would be profitable to
explore in future research. The first set of suggestions concern model development. First, an empiri-
cal comparison of the performance of various different techniques for combining the predictions of the
LTM and STM, including the weighted average used here and the Dempster-Shafer scheme used by Con-
klin & Witten (1995), would be useful for future model developers. Second, Bunton (1997) describes an
information-theoretic state selection mechanism which replaces the original state selection used in PPM*
(see §2.3.6) and which consistently improves performance in data compression experiments. It remains
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to be seen whether this mechanism can be fruitfully applied with music data. Finally, the extension of the
methodology used in this research to comparisons between different modelling approaches could yield
interesting results. It would be useful, for example, to compare the performance of the PPM variants
analysed here with that of models using other smoothing techniques commonly used in statistical lan-
guage modelling, such as Katz backoff (Katz, 1987) and Kneser-Ney smoothing (Kneser & Ney, 1995),
and models based on the Lempel-Ziv dictionary compression algorithm as used by Dubnov, Assayag and
their colleagues (Assayag et al., 1999; Dubnov et al., 1998; Lartillot et al., 2001), the prediction suffix
automata used by Lartillot et al. (2001) and Trivifio-Rodriguez & Morales-Bueno (2001) and the neural
network models described by Mozer (1994).

Our second set of suggestions concern the data used. It should be emphasised that we have restricted
our attention to a single attribute of musical sequences: chromatic pitch. None of the conclusions reached
in this research can be guaranteed to hold for other attribute domains and representations; we shall need
similarly detailed experiments to assess whether the performance improvements recorded here remain
valid with these new representations. Therefore, an important consideration is the extension of the ap-
proach to other attributes of musical events and more sophisticated representations of musical works.
Conklin & Witten (1995), for example, describe several means of deriving more abstract representations
of the musical surface as well as developing methods for combining the predictions of n-gram models of
these representations (see §2). It is also important to emphasise that our corpora consisted exclusively
of folk music; further work is needed to examine the generality of our conclusions in a broader context
of musical styles. In a similar vein, we consider it important to extend the approach to homophonic and
polyphonic music. The issue of representing such music for training statistical models is discussed by,
for example, Assayag et al. (1999), Conklin (2002), Pickens et al. (2003) and Ponsford et al. (1999).
Since the results obtained here are in broad agreement with those obtained in data compression and sta-
tistical language modelling experiments, we expect the performance improvements to hold some degree
of generality and to carry over to these more sophisticated representations of music.

Our final suggestions are methodological. The first concerns the fact that many of the directions cited
above concern comparisons between different models. Standard corpora exist for comparing model per-
formance in both the data compression and statistical language modelling communities: e.g., the Calgary
corpus (Bell et al., 1990) and LOB corpus (Johansson et al., 1986) respectively. Such standardisation fa-
cilitates the objective and empirical comparison of different models and would be highly beneficial to
the music processing community. Another methodological issue concerns the validity of entropy as a
measure of performance; in order to address this question we need detailed empirical studies of the re-
lationship between entropy measures and model performance on a range of musical tasks such as those
outlined in §1. In the meantime, we believe that the techniques described in this paper can be profitably
applied to practical musical tasks and that the consequent reduction in cross entropy will translate into
actual performance improvement on these tasks.
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