
Musical Knowledge:
what can Artificial Intelligence bring to the musician?

Geraint Wiggins Alan Smaill

Abstract

In this paper we introduce the idea of Knowledge Representation in the con-
text of Artificial Intelligence. We explain why finding a good representation is
an important issue in Artificial Intelligence research, and why music raises some
particularly interesting questions. We then proceed to explain our own system
for music knowledge representation, Charm.

1 Introduction

In this paper, we introduce the field of Artificial Intelligence (AI), especially as it
relates to music and musicology, and discuss an aspect of fundamental importance in
its use for both theory and practice: the representation of knowledge, primarily for use
on computers, but not necessarily so.

In the musical area, study of Knowledge Representation can yield fruit for both musi-
cians and AI scientists, with music raising some significant questions of very general
import in AI, and AI techniques being very usefully applicable in many sub-fields of
music.

The rest of the paper is arranged as follows. We begin with a broad characterisation
of the field of AI, explaining some important distinctions and stating our position with
respect to them. We proceed then to suggest that AI technology can be useful to the
musician, and give examples of how this might be so. We then develop the central
notion of knowledge representation, and discuss how this is of interest to musicians
and workers in AI alike. This leads us in to a detailed but informal description of a
particular representation system for music on computers, Charm. Finally, we draw
conclusions, and suggest possible directions for future work.

Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge, Edinburgh EH1
1HN, Scotland. Email: A.Smaill, G.A.Wiggins@ed.ac.uk

1

Musical Knowledge 2

2 What is Artificial Intelligence?

2.1 A science of intelligent behaviour

Artificial Intelligence is the scientific study and simulation of intelligent behaviour. It
is sometimes incorrectly presented as a sub-field of computer science, but in reality
is a strongly interdisciplinary melting-pot for ideas from many areas of human – and
animal – endeavour. At an academic conference on AI, for example, one might expect
to meet psychologists, biologists, linguists, logicians, mathematicians, philosophers,
and other researchers interested in the scientific aspects of their fields – including, of
course, musicians.

2.2 A field with many sub-fields

As a field of study, AI is divided into fairly clearly delineated sub-fields, such as:
machine vision – modelling of animals’ and humans’ ability to understand visual im-
ages; natural language and speech processing – understanding and generating mean-
ingful text and speech; mathematical reasoning – simulating the reasoning process of
mathematicians involved in, for example, building formal proofs. One of those areas,
called variously Music & AI, Cognitive Musicology and Computational Musicology,
includes the subject of this paper: the representation of musical knowledge on com-
puters.

2.3 Why study AI?

The motivation behind AI, for the majority of researchers, is somewhere on a spectrum
between two complementary points of view. At one end of the scale sits Cognitive Sci-
ence, whose aim is to understand the working of the mind (and also often the brain),
for its own sake. At the other resides Intelligent Systems Engineering, whose purpose
is to build computer systems which can perform tasks often thought of as requiring
intelligence in humans, such as reacting to spoken language. The reasons for want-
ing to built intelligent systems vary. For example, the pervasive filtration of computer
technology throughout society means that more and more people are needing to use
computers without expensive training, so if the machines can understand spoken lan-
guage, they are much easier for most non-programmers to use. On a more technical
level, humans are good at solving certain classes of problem (for example, finding
mathematical proofs) which are, in general, hard to solve by standard techniques in
computer science – human mathematicians seem to use more intuitive approaches.
While AI will never be able to solve these problems in general, its techniques are often
able to go rather further than the standard “unintelligent” approaches.

2.4 How should we study intelligence?

Both the cognitive scientist and the engineer at the two extremes of AI research are
involved in building systems which can then serve different purposes. In the case of

Musical Knowledge 3

the engineer, the concern is not to match up closely with human capabilities, but to
provide a system capable of performing a given task, usually inspired by some ideas
of how it is done by humans. In this case, the system must be tested and revised if
the performance is unsatisfactory. In the case of the cognitive scientist, the interest
is in building a theory of how some human or animal cognitive activity works (for
example, recognising metrical patterns in music). If such a theory is embodied in a
computer system, then the performance of the system can be compared with human
performance, and the theory either accepted for the moment, or, more likely, changed.

It’s important to understand that this approach does not necessarily explain exactly how
the mind works; we can never know if our program achieves its results in the same way
as the system it emulates, but only that it does indeed achieve those results. However,
if a model correctly predicts behaviour which was not explicitly programmed into it,
we may draw the tentative conclusion that our model is “accurate”, at least with respect
to the behaviour in question. Also, often, the way in which a model fails suggests how
to improve it. One particular advantage of computational modelling as a methodology
is that it divorces us from the need perform gruesome experiments in the so-called
“wetware” – the human brain – itself!

2.5 Styles of representation in AI

Symbolic AI

Another broad distinction we can make in the AI world is in terms of how the pro-
gram embodying our simulation actually works. The distinction is between symbolic
and subsymbolic systems, and it is very relevant to our discussion here. For further
discussion of the difference between symbolic representations and the alternatives, see
[BA91].

Symbolic AI is based on the principle of using a computational model which explicitly
represents aspects of the problem being solved. In other words, the program has a
given vocabulary of symbols, which are used to represent objects and/or concepts; it
may have a model of the world in which it operates (a bit like a geographical map). In
this context, the programmer knows what her chosen symbols mean in relation to the
world in which the program is supposed to operate. So she can take her vocabulary of
symbols, and say, in its terms, how the program achieves its results.

There are several computer languages, such as Lisp and Prolog, and even purpose-built
computers, such as the Xerox Lisp Machine series, specially designed for this kind of
symbolic processing.

Subsymbolic AI

The other general style of AI programming is the subsymbolic approach. The best
known way to achieve this is to use neural networks: systems which emulate (in a fairly
loose sense) the general structure and operation of the brain. A neural network consists
of a number of nodes, connected together in a certain configuration. Each node is
capable of reading information from those immediately connected to it, and passing on

Musical Knowledge 4

an output to other nodes in some way dependent on those inputs. Normally, the nodes
are quite simple processors, and they are usually all the same; it is their multiplicity
and the connections between them that allow them to work on hard problems. For this
reason, this approach to programming is sometimes called connectionist computing.

A neural net is programmed by “showing” it possible inputs and training it to produce
the right output for each. (The details of this are beyond the scope of this paper. See
[RN95] for an introduction.) The reason this is not symbolic, but subsymbolic, is
that there is no a priori reason to be able to see any symbolic reading of the system’s
evolution. In other words, we cannot (usually) look inside the network and understand
how it works, and what the values passing around it mean in terms of its world. We
can only see its inputs and outputs – just like the human mind.

The subsymbolic approach to computing has had some spectacular successes (see
[HKP91]), but also spectacular failures, mostly due to the problem that one cannot
be absolutely sure that the program is really doing what one thinks it does. For
the purposes of this article, however, we are situated firmly in the symbolic area.
We will choose symbols to represent musical knowledge, and we will say a pri-
ori what they mean and how they may be reasoned with. The reader interested in
the symbolic/subsymbolic dichotomy specifically in a musical context should refer to
[Lem88].

3 AI for Musicians

Having broadly defined Artificial Intelligence, we now consider what use it might be
to musicians, and, indeed, what use music can be to AI.

Music is undeniably an intelligent activity, which operates at more than one level in the
mind. Some kinds of musical activity are deeply and consciously intellectual; some
involve enormously complex and delicate physical skills, which have to be learned;
and some involve what seems to be an almost subconscious and involuntary response.

Like the study of AI, the study of music, ranging from practical instrumental perform-
ance to deeply academic historical scrutiny, is a broad church, and for this reason,
the two fields are able to interact very usefully at many points along the spectrum
described above, between Cognitive Science and Engineering.

Beginning at the former end, we can use computational modelling to study issues of
perception of music [JSM90]. We can try to build programs which emulate human
performance practice and style, and thus shed light on how the player communicates
her music to the listener [Des93, Des92]. We can build programs which attempt to
improvise in certain styles and thus try to explain this aspect of the compositional
process [BDV86, DMR87].

AI techniques can be useful to musicologists, too. New techniques for text and score
analysis mean that works can be statistically analysed to help identify their composer
[Cop91]. Computer modelling is helping ethnomusicologists understand the nature
of non-Western musics [BK92]. New techniques for human computer interfacing are
opening a potential new world of music education for everyone [SSW94, CFIZ92,

Musical Knowledge 5

HEC90].

Much of this work makes an interesting contribution to knowledge in itself, but it is of-
ten much more than a purely theoretical activity. At the intelligent systems engineering
end of our scale, these ideas can be used to analyse problems with performers and so
help correct them; they can help with computer based specialist education, especially
in locations or organisations where specialist human expertise is unavailable. In a per-
formance context, computers can be allowed to interact with human performers and
thus to enhance and extend the range of what is musically possible [Mac92, Row93].

Because music is such a fundamental part of human behaviour at all sorts of levels –
socially, educationally, sociologically, emotionally – we may also expect its study to
shed light on the working of the mind and/or of the brain. We can perhaps use music
to study the relationship between intellectual and affective ability, since it seems to
bridge whatever gap may exist between the two [Slo85]. We can set new challenges
to AI researchers, such as the management, in real time, of the enormously complex
interactions between human and computer performers. This last is a specific example
of a general problem of how to schedule more or less prescribed events between two
or more parties – a problem evident, for example, in today’s robotic production lines.

In the area of interest of the current paper, music throws up some important general
issues, which we discuss in more detail in later sections. The first of these is the
question of multiple interpretations of knowledge. Musical structure is rarely definable
in any single absolute sense, and even when it is so at the physical level of notes, it
may not be so in an audible or psychological way.

Before we discuss these issues in detail, however, we must first introduce the general
notion of Knowledge Representation.

4 Representing Knowledge

4.1 Why do we want to represent knowledge on computers?

Notwithstanding the existence of subsymbolic programming, the idea of and need for
Knowledge Representation underpins any activity involving present-day computers.
(In the case of neural networks, the program which manages the learning of the net-
work is typically one that can be understood in symbolic terms at one level, but only
because it deals with notions such as that of network and update of network properties;
on the level of musical meaning, there is usually no use of symbols referring to the mu-
sical domain whose properties are being learned.) In one sense, even the abacus has
the ability to represent a very specific kind of mathematical knowledge and to allow
the user to reason with it – albeit in a very limited way. In the current paper, the kind
of knowledge we are interested in is of a rather more general nature. Rather than being
restricted to a particular number system, we wish to be able to make general statements
about “what is true”, and to draw conclusions from them.

Musical Knowledge 6

4.2 Managing knowledge

Over the past forty years or so, computer science has advanced to a level where the
activities of computer system and program design are really quite well understood.
This progress has resulted in the production of so-called “high level languages”, in
which the programmer can separate herself from the nuts and bolts of how a program
works, and think in terms of more abstract – and hence clearer – structures and pro-
cesses. The nuts and bolts are then left to the automated parts of the programming
system. As a result of this, the expression of program content has moved from be-
ing very close to the inner workings of the machine (“Do this, then do this, then do
this. . . ”) to being much closer to an abstract definition of the problem being solved
(“This is what needs to be done.”).

The design of these structures and processes, and the means by which the computer
finds its way around its data, are very important to the operation of a program, and to
our understanding of it. The structures can also encode knowledge about the data as
well as the data itself, and this can be very important in the operation of the program,
and in updating it or correcting programmer errors. For a simple example, putting a
collection of representations of objects all in one place might signify that the objects
have a certain useful property in common.

The structuring and representation of knowledge in symbolic AI programs is particu-
larly important, for several reasons. For one thing, AI programs tend to have to deal
with large bodies of densely interconnected information; the data needs to be struc-
tured in such a way that a program can choose paths to move around it fairly arbitrarily.
For example, the concept of a “red ball” (the coloured round thing, not the Commun-
ist Party Annual Dinner-Dance) might be approached from (at least) two directions
– from the collection of “red things” or from the collection of “round things”. This
bifurcation applies every time we add a new piece of information to the description
of an object or concept – moving from “red ball” to “big red ball”, for example. See
[CFIZ92] for a musical system that deals with these issues.

It is also a common feature of descriptions of objects that their properties need to be
described in terms of the context in which they are found. For example, a computer
may be part of the InterNet, with respect to which it has a particular, well-defined
function; on the other hand, someone planning the layout of an office may well view
it as no different from any other piece of furniture. The remote InterNet user does
not care where the computer is; but the office planner must consider issues such as
accessibility, and the location of power points. Conversely, the user of the office needs
to understand more of the nature of the computer, so as to know not to splash coffee
on it or to eat it or to use it to stub out cigarettes. So we need to be able to deal not
only with very dense and detailed information, but also with different subsets of that
information, depending on our viewpoint.

4.3 Understanding the properties of our data

On a more technical side, we would like to know something about the properties of
our vocabulary of symbols itself. It would be convenient to think of it as a language,

Musical Knowledge 7

and we would like to be sure that whatever we write down in that language can be
understood. For example, there is little point in writing a program which gives us
as output a bunch of symbols from our vocabulary, but whose combined meaning we
cannot understand. In the same vein, we would like to be sure that our program will
stick to the language we have given it, and not produce answers in terms of symbols
whose individual meaning we have never defined.

These notions do not just relate to the language of a symbolic program, but also to the
reasoning we can perform using the language. Specifically, we want our AI program
to carry out some kind of reasoning. We certainly do not want the program to be
able to draw conclusions which are incorrect or contradictory; and, often, we want to
be sure that it is able potentially to draw every conclusion which is correct. These
two properties are called, respectively, soundness and completeness of the reasoning
system. For some languages and associated reasoning systems it is possible to prove
soundness and completeness.

And we can sometimes go further than this. Given a language for knowledge repres-
entation, we can sometimes say, in a very precise mathematical sense, how difficult
reasoning about knowledge expressed in a particular language is. This means that, if
we are careful, we can be in a position to choose the simplest possible kind of lan-
guage required to represent and reason with our knowledge. Thus, we can make the
most efficient possible use of our computing facilities, and allow users to obtain their
answers in the shortest possible time. See [DLNN91] for technical details.

5 Representing Musical Knowledge

5.1 Surfaces of abstraction – the musical surface

Another important question is a philosophical one: how do we choose the level of
detail at which to work? This is a question of great importance in all symbolic AI.
For example, in the musical area, there is a scale of abstraction along which we can
move, taking us, for example, from the actual variations in air pressure which cause a
sensation of sound, through notions such as “notes”, “phrases” and, eventually, “sym-
phonies” or “concerti”. In some contexts, we might want to go even further, and
consider, say, the entire output of a given composer as one large work, with a notion
of controlled development as time proceeds. Further, as any music analyst will tell
us, there are other dimensions along which to move which bear little or no relation to
these rather Western classical terms. There is no one right answer to this question, but
one needs to have an answer before beginning to think about working with musical, or
indeed any, knowledge on a computer.

To be more specific, in order to build a representation of knowledge, we need some
basic building blocks with which to start, and we would like to be consistent about
them. In AI music work, the level of these blocks is sometimes called the musical
surface. Jackendoff [Jac87] defines it as “the lowest level of representation which has
musical significance.”

It is important to note that, in choosing a musical surface, one is not making a general

Musical Knowledge 8

statement about what is or is not important for all musics. Rather, one is defining what
one’s own representation is intended to represent. Subsequently, one is limited to the
expression of elements of the surface or constructions built from them, so it makes
sense to think hard about what is the right place to start. We return to this issue in the
context of our work on the Charm system, below.

5.2 How can we evaluate musical representation systems?

An example of a well-known representation which often does not represent what many
users want is MIDI [Rot92] (the Musical Instrument Digital Interface) – its musical
surface is usually quite adequate in the application of controlling electronic keyboards
(for which it was designed); however, it is often used for applications well outside its
range of expertise. Such users would be well advised to search the literature for a more
general and expressive music representation.

MIDI has another shortcoming in terms of general representation: even if its musical
surface is right for one’s application, it provides very little in terms of representation
for higher-level aspects of music, such as phrasing, or less audible relationships within
the data. In [WMSH93], we proposed two dimensions along which musical representa-
tions may be compared. The first of these is expressive completeness, which measures
the amount of detail which can be represented; the second is structural generality,
which measures the amount of information about musical structure which can be en-
coded explicitly. MIDI scores poorly on both. It is expressively incomplete because it
throws away a lot of important information (e.g., timbre, attack), and it is structurally
ungeneral because there is no means for the explicit representation of, say, phrasing,
trills, or crescendi. All of these latter aspects of music can of course be “written out”
in MIDI – small timing variations indicating phrasing, for example, or a series of al-
ternating notes constituting a trill – but there is no notated structure which actually
says “this is a phrase” or “trill this”. As a result, the representation is impoverished,
because musical structures like this must either be ignored or searched for again and
again. We would consider a music copyist who chose without very good reason to
write out trills explicitly, with no trill marking, a poor practitioner indeed.

A music representation system, then, must be flexible. Ideally, it should not restrict its
user to a particular flavour of data, nor should it restrict her to representing her data
in a particular syntax. A representation system such as this would be general indeed,
and, unfortunately, it would be hard to make useful claims about the properties of the
language, which we discussed above.

A good compromise, then, is a representation with an explicit, but not too restrictive,
musical surface, within which the widest possible range of data can be represented.
We show one way to achieve this below. The representation must also allow the user
to make groupings of the building blocks of the musical surface, and groupings of
groupings, to allow arbitrarily complex annotation of the data. In this way, a rep-
resentation can maintain maximal expressive completeness (within the domain of its
musical surface) and still achieve as much structural generality as is required.

Musical Knowledge 9

5.3 Using musical representation systems

What problems, then, do knowledge representation systems for music solve?

Perhaps most obviously, they allow us to represent aspects of music which are not
captured in the conventional score in well defined and generally meaningful ways –
regardless of whether we want to use a computer or not. Also, they allow us to get
musical knowledge into a computer file in an expressive, purpose-built way, so that we
can be sure of representing precisely what we want to represent. This leads us into the
world of computer aided music and musicology, as discussed above, and which needs
no more advertising.

At a lower level, though, some useful practical possibilities are worth mentioning. Use
of computers for music and musicology can greatly facilitate sharing of data between
researchers, especially given the advent of the InterNet and the Worldwide Web. Some
researchers have given careful thought to maximising the “shareability” of their know-
ledge representation, so that programs and data can be interchanged with the minimum
of fuss.

Didactically speaking, this kind of knowledge representation opens up a significant
range of possibilities for general musical data storage. By designing her representa-
tion carefully, a user can annotate a computer representation with exactly the inform-
ation in which she is interested, in a much more flexible and more accurate way than
is generally possible with, say, extensions to conventional score notation. This is be-
cause formal knowledge representation gives us a more precise way to say what our
annotations mean.

Finally, back at the abstract level, using explicit, formal knowledge representations
can lead us to a deeper understanding of what we mean when we think and talk about
music, and a better means than hitherto of expressing and exchanging new and perhaps
difficult ideas.

6 The Charm System

In this section, we describe a framework for representing music, so that it can be
reasoned about, and thus the musician can be enabled to create, analyse or transform
musical material. The system has been described in detail elsewhere (see [SWH93,
HSW91, WMSH93, SWM93]); here we present an informal account of the principles
behind the framework.

6.1 The musical surface

As was discussed in section 5.1, there is a choice to be made over where the musical
surface is to be placed. In this case, our primary interest is in music at the level of
notes and phrases, rather than the internal structure of individual tones and timbres.
Therefore we base the representation around the level of musical notes as the lowest
level of description that we work with. This does not mean that issues of timbre and
intensity are ignored; it simply means that these are taken to be properties of notes,

Musical Knowledge 10

rather than phenomena to be further analysed in some way. In choosing a note-based
musical surface, we follow the choice made by Lerdahl and Jackendoff in [LJ83].

Not all sorts of music fit gracefully within a view organised around notes – in par-
ticular, much electronic music is better thought of in other ways. However, a large
proportion of western music, whether tonal or atonal, can be well understood in terms
of collections of notes with various properties, and thus will fit into the framework we
describe.

Another choice that we have made is to represent music in performance rather than
music as scored. The notion of performance is, to be sure, idealised, in that the dif-
ferences from performance to performance are passed over, although still features of
the score such as time signature and key signature do not feature at the primitive level
of our framework. Of course, the information embodied in such notations in a score
is important in understanding the significance of the music, and this information can
appear elsewhere in the framework in another form, where it tells us about the tonal or
metrical analysis of the various collections of notes in question.

6.2 Pitch, time, etc.

Two crucial properties of notes are their pitch and their place in time; the latter has two
aspects, the time at which a note begins, and the time it ends (or the length of time
that the note lasts). The western score notates these roughly in a two-dimensional way,
where vertical displacement indicates pitch, and horizontal displacement represents
time, but this has been refined to allow more accurate indication of both dimensions.

For the purpose of harnessing the power of a computer representation, the score itself
is not very helpful; it is possible to take a score, considered as a pattern of marks on
paper, complete with whatever smudges and stains it may contain, and turn it into a
representation that would allow that pattern to be reproduced on the page, say after
transmission to a different location. This is like transmitting a score by fax, since
no understanding of the musical content is needed. But this is not how the musician
understands the score – rather, the marks on the score refer to real or imagined musical
events, and it is the structure of this music that we want to capture, not the squiggles
on paper.

How can we represent the properties of a note in a more useful way for our purposes?
Many ways have been used in computer programs. For example, we can measure pitch
in piano music as frequency measured as a number of Hertz, or as a number of semi-
tones above some chosen lowest note, or by giving an octave number, and a letter from
A to G, and (possibly) an accidental (such as), and many other ways besides. For
time, there are equally many possibilities.

Rather than fix on one of the choices mentioned above, we have chosen to use what is
known in Computer Science as an abstract data type [AHU83]. This means that we
say what properties we want of the pitch and time representation, and what operations
we should be able to carry out, rather than choosing a particular representation. The
idea is that we don’t care whether pitch is given in Hertz or semitones, and we should
be able to understand the music just as well whichever choice has been made. So it

Musical Knowledge 11

is a good idea to hide the unimportant details of that choice, and just think about the
operations we need, and how they fit together.

For example, for pitches, we require operations that

given two pitches, say what the interval is between them;

given a pitch and an interval, say what the pitch is that interval above the given
pitch;

given two intervals, say what interval is got by adding the two intervals together.

Together with similar operations for temporal structures, this is enough to let us ma-
nipulate the pitch and time aspects of musical notes. Individual notes are associated
with a particular pitch, start-time and duration.

It’s important to note that the general framework encompasses a wide range of pos-
sibilities; for example, it is not restricted to semitone differences between pitches, as
quarter-tone or other less standard possibilities can be dealt with just as well. Whatever
particular choice is made at the end of the day, some implementation of the choice is
needed, though subsequent use of the representation does not depend on this choice.

A whole piece of music is then represented as a collection of notes, each of which is
situated in time and in pitch, and indeed with respect to intensity and timbre. Other
properties of individual notes, such as attack, could also be included here, though our
existing implementation does not support this.

6.3 Higher-level structures

Having established this note-level representation, we now discuss how musical con-
cepts such as phrase, motif, key, inversion . . . can be dealt with on top of this founda-
tion. We particularly want to be able to deal with several simultaneous accounts of the
same raw musical material; such ambiguity both in analysis and creation is a pervasive
feature of the musical domain (see for example [CW95, Min81]).

Consider the brief extract shown in figure 11.

If we think of the notes as they would be performed, with varying intensities and
timbres, as given to us, we want to be able to think of groups of the notes as fitting
together for various reasons. In this case we might be interested in the perceptually
dominant notes at certain moments, or in the notes with similar durations, or with notes
that fit in a particular place in the twelve-note series that underlies this movement, as
given in [Bou63] and shown in figure 2.

We call any such grouping a constituent, and it may group together not only notes, but
other constituents as well. We have two ways of representing such groupings.

The first simply allows some collection of notes (or indeed some collection of struc-
tures of the sort we are in the process of describing) to be gathered together and labelled
by the user as significant. For example, the notes in the first staff could be gathered

1not all the phrase marks and dynamic indications from the score are shown.

Musical Knowledge 12

Presque lent

mf

mp

mf

mp

.

mp

p

ppp

Figure 1: Boulez, third sonata, formant 2, texte

Figure 2: Series for texte

together as follows. (Although the staff layout is not significant at the note level of the
representation, we may suppose the composer associated some structural information
with this layout in this case that an analyst might like to explore.)

Suppose that these notes are associated with statements of “events”, each given a name
e1,e2,e3 . . . , and specifying information about the pitch, time, intensity etc char-
acteristics (we omit the details of these here; they should be chosen according to the
discussion in the previous section).

event(e1, pitch(...), time(...), ...).
event(e2, pitch(...), time(...), ...).
event(e3, pitch(...), time(...), ...).
event(e4, pitch(...), time(...), ...).
event(e5, pitch(...), time(...), ...).
.
.

Let’s suppose that the notes in the top staff correspond to e1,e2,e3,e5. Then a
statement can be made that these events together form a collection we call a constitu-
ent, of a type we’ll call a motif in this case. This is written as

constituent(c1, motif(1), { e1,e2,e3,e5 }, ...).

Musical Knowledge 13

indicating that the constituent labeled c1 is an instance of motif(1), containing the
events e1,e2,e3,e5.

For this sort of constituent, any collection is possible, and the labels and classes as-
signed are arbitrary. There is another sort of constituent where, instead of saying what
things are to be gathered together, a logical specification is given of what properties the
members of the collection should have in order to be gathered together in this way. For
example, a collection of notes will form a series just if their pitches correspond one
to one with the twelve semitones of an octave, in some order, and ignoring the octave
of the pitch. We can write down in our specification language this characterisation;
this means that we can have the computer analyse such music to look for collections
of notes which form a series, or which check collections of notes to see if they form a
series.

For another example, consider the motif we defined above. What is important for a
motif is to be able to recognise other occurrences of the motif, which will differ typic-
ally in time, pitch, and other characteristics. However, in a particular style we expect
to be able to characterise this relationship of similarity, for example, by saying what
sorts of transpositions, augmentations etc can be allowed between motifs. Again this
allows the system to do several tasks – it can check an analyst’s work when she iden-
tifies several collection of notes as being instances of the same motif; it can search
through music in order to find instances of a given motif; it can search for two collec-
tions of notes which are close enough to count as a motif (this is the basis of the work
of [Cop91]); and it can be used to generate variants of a given motif.

In the case of the example in figure 1, Boulez in [Bou63] quotes the series shown in
figure 2. The series is divided into motifs as indicated. We can define similarity of
motifs in this context by saying that we are looking for any transposition together with
possibly an inversion that will make the pitches agree (ignoring octaves, and ignoring
the order of notes). Now we can test to see if the motif chosen is the same as one of
the motifs in the series – it is, and in more than one way, given the symmetries in this
series.

So far we have seen examples of how notes can be gathered into collections. Further
collections, which can pull together collections already defined, allow us to represent
other features. For example, the arpeggiated chord in the example above can also
be analysed as corresponding to a motif from the series. We can then ask if the two
motifs from the example come from a common transformation of the series (which is
the case), and then of the rest of the series can be found in the extract shown. Further,
the enchaining of versions of the series which forms the basis for this movement can
equally be detected in this manner, and represented as a collection of (overlapping)
constituents.

This example lends itself more to logical analysis than music written in other styles.
Nevertheless, we believe that a wide range of styles can be treated in this way, and that
the logical relationships that underly musical analysis can be made explicit. Indeed,
one of the advantages of such an approach is that it forces the analyst to be explicit
about her underlying assumptions.

We should also point out here that it is possible to provide assistance in the task of

Musical Knowledge 14

working out general rules, where some set of specific examples of analysis is known,
but where the general characterisation is not immediately available. This area is known
as Machine Learning; see [SWM93] for an overview.

In the space available here, we can only hint at the role we envisage for our framework
within composition, and within transformation of musical material, for example in a
situation where musicians are interacting in performance with a computerised system.
Our claim is that what is needed is a language for dealing with musical material that is
both accessible to the composer and performer, and which is interpretable by machine;
this view is also taken by builders of substantial musical computer systems, such as
that described in [CFIZ92]. For our framework to be useful in this role, a substantial
library of logical characterisations for the the central musical concepts is needed; this
is the direction that future work will take.

7 Conclusion

In this paper we have informally outlined the basis of a generalised music representa-
tion for use with computers. We placed this in a context of an introduction to the ideas
of AI, and a discussion of some of the possible uses of AI technology in the musical
world.

The subject matter of this paper is broad indeed, and therefore we can only begin to
suggest the breadth of interesting possibilities in such a short space. We have attempt
to emphasise, however, that the benefits of the meeting between music and AI are
manifold and of interest to both parties, on both practical and theoretical levels.

We stand at the doorway to an exciting new world of musical experience, activity
and understanding, which can, in the longer term, only benefit the understanding of
humankind and its currently inexplicable urge to make and hear music. The concepts
and principles presented here are absolutely fundamental to this marriage of science
and art; having laid them out in theory, we will now continue to apply them in more
applied or practical directions.

References

[AHU83] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Al-
gorithms. Addison Wesley, Reading, Massachussetts, 1983.

[BA91] W. Bechtel and A. Abrahamsen. Connectionism and the Mind. Black-
well, 1991.

[BDV86] W. Buxton, R. Dannenberg, and B. Vercoe. The computer as accompan-
ist. In CHI ’86 Conference Proceedings, pages 41–43. ACM/SIGCHI,
April 1986.

[BK92] B. Bel and J. Kippen. Bol processor grammars. In O. Laske, M. Balaban,
and K. Ebcioglu, editors, Understanding Music with AI – Perspectives on
Music Cognition, pages 366–401. MIT Press, Cambridge, MA, 1992.

Musical Knowledge 15

[Bou63] P. Boulez. Penser la musique aujourd’hui. Gonthier, Mayence, 1963.

[CFIZ92] A. Camurri, M. Frixione, C. Innocenti, and R. Zaccaria. A model of
representation and communication of music and multimedia knowledge.
In B. Neumann, editor, Tenth European Conference on Artificial Intel-
ligence, pages 164–8, Vienna, 1992. John Wiley and Sons, Chichester,
England.

[Cop91] D. Cope. Computers and Musical Style. Oxford University Press, 1991.

[CW95] D. Conklin and I.H. Witten. Multiple viewpoint systems for music pre-
diction. J New Music Research, 24(1):51–73, March 1995.

[Des92] P. Desain. A (de)composable theory of rhythm perception. Music Per-
ception, 9(4):439–454, 1992.

[Des93] P. Desain. A connectionist and a traditional AI quantizer, symbolic
versus sub-symbolic models of rhythm perception. Contemporary Mu-
sic Review, 9:239–254, 1993.

[DLNN91] F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tractable concept lan-
guages. In Proceedings of IJCAI-91, volume 1, pages 458–463. Interna-
tional Joint Conference on Artificial Intelligence, 1991.

[DMR87] R. Dannenberg and B. Mont-Reynaud. Following an improvisation in
real time. In Proceedings of the International Computer Music Confer-
ence, pages 241–248. Computer Music Association, August 1987.

[HEC90] S. Holland and M. Elsom-Cook. Architecture of a knowledge-based mu-
sic tutor. In M. Elsom-Cook, editor, Guided Discovery Tutoring, London,
1990. Paul Chapman Publishing Ltd.

[HKP91] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of
Neural Computation. Addison-Wesley Publishing Company, Redwood
City, CA, 1991.

[HSW91] M. Harris, A. Smaill, and G. Wiggins. Representing music symbolic-
ally. In IX Colloquio di Informatica Musicale, Genoa, Italy, 1991. Also
available from Edinburgh as DAI Research Paper No. 562.

[Jac87] R. Jackendoff. Consciousness and the computational mind. MIT Press,
Cambridge, MA., 1987.

[JSM90] Jacqueline A. Jones, Don L. Scarborough, and Benjamin O. Miller. Gt-
sim – a computer simulation of music perception. In Colloque Interna-
tional - Musique et Assistance Informatique, Marseille, 1990. From the
proceedings of the Marseille conference.

[Lem88] M. Leman. Symbolic and subsymbolic information processing in models
of musical communication and cognition. Interface, 18:141–60, 1988.

Musical Knowledge 16

[LJ83] F. Lerdahl and R.S. Jackendoff. A Generative Theory of Tonal Music.
The MIT Press, Cambridge, MA., 1983.

[Mac92] T. Machover. Hyperinstruments : A progress report 1987-1991. Media
lab document, MIT, Cambridge, MA, 1992.

[Min81] M. Minsky. Music, mind and meaning. Computer Music Journal,
5(3):28–44, 1981.

[RN95] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice-Hall International, London, 1995.

[Rot92] J. Rothstein. MIDI : a comprehensive introduction. Oxford University
Press, Oxford, 1992.

[Row93] R. Rowe. Interactive Music Systems. MIT Press, Cambridge, Mas-
sachetts, 1993.

[Slo85] J. Sloboda. The Musical Mind. Oxford Science Press, Oxford, 1985.

[SSW94] M. Smith, A. Smaill, and G. Wiggins, editors. Music Education: An Arti-
ficial Intelligence Perspective, Edinburgh 1993, London, 1994. Springer
Verlag. Workshops in Computing series.

[SWH93] A. Smaill, G. Wiggins, and M. Harris. Hierarchical music representation
for analysis and composition. Computers and the Humanities, 27:7–17,
1993. Also available from Edinburgh as DAI Research Paper No. 511.

[SWM93] A. Smaill, G. Wiggins, and E. Miranda. Music representation – between
the musician and the computer. In M. Smith, G. Wiggins, and A. Smaill,
editors, Music Education: An Artificial Intelligence Perspective. Springer
Verlag, London, 1993. Also available as DAI Research Paper 668.

[WMSH93] G. Wiggins, E. Miranda, A. Smaill, and M. Harris. A framework for the
evaluation of music representation systems. Computer Music Journal,
17(3):31–42, 1993. Machine Tongues series, number XVII; Also avail-
able from Edinburgh as DAI Research Paper No. 658.

