
Monte Carlo Search for a real-time arcade game,
Puyo-Puyo

Paul Hanson and David C. Moffat1

Abstract.
Monte Carlo Tree Search (MCTS) and other Monte Carlo Search

(MCS) algorithms have been successful in making computers able to
play Go and similar games. This paper reports an attempt to apply
MCS to an arcade game Puyo-Puyo which requires good real-time
performance. The game Puyo-Puyo is a falling blocks game similar
to Tetris, and has a large branching factor that makes it less tractable
for more traditional techniques used for AI game players. In this ex-
periment a simple Monte Carlo algorithm was implemented to play
Puyo-Puyo, and its performance evaluated against Depth First and
Breadth First search algorithms (BFS and DFS), for realistic and op-
timal comparisons.

Results show that the MCS algorithm had better performance, and
it could play the game in real-time, about as well as a fair human
player. This was achieved as long as its simulation depth was limited
appropriately.

It is thus demonstrated that real-time AI decisions can be made
without heuristic knowledge, and that MCS has potentially useful
application to a wider range of games.

Through investigation of the varying depth limit to the MCS algo-
rithm, it appears that such algorithms need to be tuned to the game,
at least for some kinds of game or application, before determining
whether they can be successful.

1 Motivation

Artificial Intelligence (AI) plays a key role in many video games.
Games and AI have had a long standing interaction; from the early
days of gaming and titles such as PacMan and SpaceInvaders, right
up to modern day releases such as Half Life, the Total War series,
The Sims; and other first person shooters, real-time strategy games,
and social simulation games.

Some of the more common AI techniques and algorithms used
include A* search for path finding, finite state machines for simple
decision making, and various adaptations of Reynolds’ ([9]) steering
behaviour for believably realistic autonomous character movement.
These simpler techniques work more on the illusion of intelligence
rather than the demonstration of categorically intelligent behaviours
([8]). So far, this has been an adequate approach for the majority of
games, but as games become more complex and players’ expecta-
tions increase, so must the techniques used in AI evolve to meet the
higher demands.

1 Department of Computing, Glasgow Caledonian University, UK.
email:D.C.Moffat@gcu.ac.uk

1.1 MCS and MCTS for game AI

In recent years there has been a substantial development in Comput-
erGo AI using Monte Carlo search algorithms. A number of success-
ful programs based on this technique have been developed including
Gobble, Crazystone and Fuego. In general, a Monte Carlo Search
(MCS) algorithm determines the best move for any given situation by
simulating a series of random moves. By using the results gathered
from playing multiple simulated games, a Monte Carlo algorithm can
make move decisions using very little given domain knowledge [4].

The success of Monte Carlo techniques has lead to variations be-
ing used in other games. They were implemented in Battleships to
determine the optimum position to place ships [5], and even used
as a General Game Player (GGP) agent in CadiaPlayer to determine
which actions to take [1].

Because Monte Carlo Tree Search (MCTS), in particular, has nat-
urally been tried first as a replacement for alpha-beta search, it has
been used in two-player perfect information games. Such games (like
Chess and Go) have two players taking turns to move, with no moves
played by any simulated world (or “nature”). Most video games do
simulate a virtual world, however, and require players to react in real
time. This raises the question whether Monte Carlo methods can be
used when only a finite amount of time is available to the algorithm.

Falling block puzzle video games such as Tetris appear to be ideal
candidates to test the use of MCTS in video games. for a number
of reasons. Firstly, titles which support simultaneous play between
two opposing players will allow Monte Carlo to be tested against an
opponent in a non- sequential manner. The game Puyo-Puyo, chosen
for our experiment, is one such game, although we initially try it in a
single-player mode.

Secondly, The theoretical number of moves in a game like Tetris
is infinite, which will allow for the exploitation of the exploration of
random moves by a Monte Carlo method. Thirdly, each move has a
time constraint which is dictated by the drop rate of the block, pro-
viding a constraint of real time gameplay that is not related to frames
per second.

Since AI has been relatively successful in Tetris [7] [2], another
popular falling block puzzle game called Puyo-Puyo has been chosen
as the test game. The gameplay of Puyo-Puyo contains the necessary
requirements previously identified for this experiment: a large game
tree with many possible placement options per move, a relatively
large but constrained period of time for each move and two player
simultaneous gameplay. Unlike Tetris however, PuyoPuyo does not
have a recognised algorithm for making the best move and may be
suited, in that sense, to the particular strengths of MCS. The MCS
family of algorithms may represent one of the few chances we have
to play such games as Puyo-Puyo, which is therefore a good candi-



date game for MCS research.

2 The game Puyo-Puyo
PuyoPuyo is played at the same time by two opposing players, where
each player has a game board of 6x13 spaces. Pairs of different
coloured puyo are dropped onto each player’s board, which must then
be positioned to avoid filling up the game board. The player who fills
up their entire game board first, loses [10]. Spaces on the board can
be cleared by popping four or more puyo of the same colour, which
in turn sends garbage puyo to the opponent’s field. These garbage
puyo help to fill the opponent’s board faster and can only be cleared
by popping nearby puyo. The number of garbage puyo sent over to
the opponent’s field is dependant on the number of puyos popped as
well as the number of chains in the sequence. A chain starts when
four or more puyos are popped and stops when the next block falls
down.

Figure 1. Screenshots of PuyoPuyo. A green/blue pair falls, to make a chain
of four blues, which clear away; then the five greens go; then the next four
blues; and finally four reds.

In the example a blue and green puyo pair is dropped. The blue

one completes a chain, which then disappears to let the higher puyos
fall. A green chain is thereby completed, which also disappears. This
causes a blue chain and then a red chain to go as well, leaving only
five puyos at the end of the move. Because four chains have gone in a
single move, it has got a high score, and created more garbage puyo
for the opponent’s board (not shown here). To build up the potential
for such “cascades” of chains is thus the strategic aim of the game.

While the strategic aim may be clear, it is unclear how to achieve it.
In other games like Tetris, one can postulate general rules or heuris-
tics about good ways to play the game. Players soon learn to fit blocks
in patterns and wait or hope for blocks to fall that exactly fit into the
gaps, so that they can clear lines. But in PuyoPuyo there is not such
an obvious strategic method. We can fall back on brute search meth-
ods, which are not guided by expert heuristics, but then we should
make the algorithms as efficient as we can because the search space
is enormous. It is for these reasons that MC algorithms are interesting
to investigate, and hence this study.

3 Monte Carlo Search (MCS) for PuyoPuyo

Monte Carlo (MC) simulations are predominantly used as a substi-
tute to evaluation functions in game AI — the advantage being that
a value in a search tree can be determined without the need for com-
plex, time consuming expert knowledge based functions. In order
to capitalize on the advantages of MC simulations and to improve
the search capabilities of it, the concept of MC evolved into what is
known as the Monte Carlo Tree Search (MCTS).

3.1 Monte Carlo Tree Search (MCTS)

The MCTS is a form of best-first search which uses the results of
multiple MC simulations to determine which path to take [6] This
form of search was used by Bouzy [3] who combined a standard MC
search, with a shallow and selective global tree search. His Comput-
erGo programs Indigo and Olga used MCTS and were tested against
the expert-knowledge based program GNUGo 3.2. It was found that
increasing the depth and width of the search tree yielded better re-
sults, however, as the depth of the tree increased, the time it took to
perform the simulations also increased [3].

While MCTS has been very successful in playing some sorts of
game and is currently an active research area, in this study we in-
vestigate the possible value of a simpler MC algorithm, because it
may help to see which components of more complex algorithms are
most fruitful. It may also help to set a lower bound on what future
improvements might be made.

3.2 A simple MCS algorithm to play PuyoPuyo

As the game PuyoPuyo has a large branching factor (of 22 children
for each node that represents a drop, or move played), it becomes
computationally difficult to exhaustively search the tree more than a
few layers deep. In this study the MCS algorithm only searches the
first layer exhaustively, by visiting each of the 22 children in turn, in
simple round-robin fashion. None of the nodes are favoured either; in
contrast to what happens with many MCTS algorithms, where more
attractive looking nodes are visited more often under the assumption
that the best solutions may be found under those ones. These two
simplifications of the more complex and advance MCTS family of
algorithms make this MCS algorithm much shorter to implement in
code.



Below the first layer, the MCS algorithm switches into random
search mode in which it simulates further plays of the game, by visit-
ing and expanding only one child at random in each layer. However,
it is not possible in PuyoPuyo to complete each so-called playout to
the end of the game, until a terminal node is reached with a win-lose
result. This is because the game can only terminate in a loss for the
player, whose aim is to survive as long as possible, just as in other
falling-block games like Tetris; and that loss should be far into the fu-
ture, and well beyond the depth that could guarantee to be reasonably
searched in a fixed time limit.

In this implementation of MCS therefore, we impose a depth limit
to the search and take the increment in score when the limit is reached
as our indication of how good the partial playout (the simulated ran-
dom play to that depth) was. This score is then used to update the
estimated value of the initial move at the first layer that preceded the
random playout stage. Each of the 22 first-level nodes (chilredn of the
root node) is annotated with its own “best so far” score, from all the
playouts that have yet originated from it. In this way the algorithm
may be interrupted at any time, and the best of all those first-level
nodes can be selected as the best move to play. As the game is to be
played in real-time, the MCS algorithm is allowed to run for as long
as it can, until the blocks have fallen so far that the AI player must
now commit itself to one of the 22 possibile moves, and play it.

There remains the matter of how deep we should allow the al-
gorithm to go in its playout simulations, This is the second of the
questions we had about how well the algorithm could perform: what
would be the optimal search-depth limit for the MCS, and how would
its performance turn out at either higher or lower limits?

4 Evaluation scheme

The performance of the MCS algorithm was compared with that of
DFS as a commonly used search algorithm that has minimal memory
requirements and makes no use of expert or heuristic knowledge.
Performance of BFS was also compared, both in real-time and then
once with unlimited time. The real-time limit was imposed to make
a fair comparison with the other algorithms under realistic gameplay
conditions. The unlimited time execution was done by allowing the
BFS to finish exploring the whole tree exhaustively to the given depth
limit. By this means the theoretical optimum move is found for the
tree at that depth, and the other algorithms can be compared with
this best possible performance. Finally there was a random search
algorithm, in which one of the children of each visited node was
chosen at random to explore further. This

All the algorithms were tried for depth-limits of 1, 2 and 3 layers
deep, corresponding to the PuyoPuyo game situation in which play-
ers can see the current block to fall, as well as the next two ones that
will follow it. For each depth-limit, ten different games were played
(with ten different starting positions). The results of all ten games
were averaged for each of the algorithms and depth-limits, so that a
fair comparison could be drawn between them, and any differences
would not be attributable to any effect of the random starting posi-
tion. Each game was played to a maximum length of 150 moves, or
blocks to be dropped. This is because the games could otherwise go
on for an arbitrarily long time, which would make the experiment and
unpredictable duration. The 150 drop limit was the maximum, but
not all the games went on to that limit. In particular, in the weaker
or underperforming cases, the games could terminate well short of
150 drops, as the AI player would sometimes lose quickly when its
algorithm could not cope with the complexity under the real-time
constraint.

Finally, the MCS algorithm was explored further by allowing it
to search deeper in the tree, to depth-limits of 4, 5 and 6. This was
to investigate when and how its performance would degrade under
real-time demands, as the tree deepend. Although players can nor-
mally only see the current block and the next two (equivalent to
three layers below the root node), the MCS algorithm was allowed
to see all the next coming moves down to the sixth layer. If its per-
formance can manage to profit from that extra information, then we
may expect that it should be able to achieve remarkably high scores,
as any human player would find it very difficult to plan so many
drops ahead, especially under time pressure, and with the limitations
on human working memory. It was no doubt because of these natu-
ral human cognitive limitations that the game PuyoPuyo shows only
three moves ahead, including the current block.

5 Results
The exhaustive search sets the maximum score achievable to the
other algorithms, to give a fair impression of how good they are.

Figure 2 shows the scores that it can reach as the game continues,
up to the maximum of 150 drops (moves). At every ten drops, the
lines show the range from lowest to highest scores over all the ten
games that are played; and the dots in the middle show the mean
(average) over all ten games. The best played game attains a score of
more than 100,000 but the average score at the end of all ten games
is also high at nearly 70,000.

Figure 2. Exhaustive search score range

The scores for BFS (in Figure 3) are also steadily increasing, and
the algorithm performs quite well, but only scores about half of the
optimal scores possible, because it runs out of time.

The performance of all the algorithms is shown, in averages only,
in Figure 4. Here we can see that all the algorithms perform about
equally well, except for DFS which fails miserably, with its aver-
age scores never getting far above zero, and dropping as the games
continue. The reason its scores fall for higher numbers of drops is
because it does so poorly that it loses many of the games well before
the 150 drop limit; as those games contribute nothing to the score the
average goes down.

However the other three algorithms perform similarly, and it may
come as a surprise to see how close they are. Nevertheless, there
is a lot of room for improvement as the exhaustive search, which
is not time-limited, eventually achieves scores significantly higher.
Another way to put this is to say that the real-time interruptable al-
gorithms (BFS, Random search, and MCS) all start strongly, and can
plan their moves very well; but as the game progresses their small



Figure 3. BFS score range

mistakes (or sub-optimal moves) begin to accumulate. Rather like
Tetris, the game changes character as it goes on, from scoring well
by clearing blocks, to a struggle to survive as the board fills up.

Figure 4. Scores for all algorithms

Having compared the different algorithms, we now move to our
second question, regarding how well the performance of the MCS
holds up as it is set to search deeper in the tree. Of course if it can
manage to search deeper then its scores should increase, but it might
not be able to cope, and consequently degrade in performance.

We see from Figure 5 that the MCS does much better in this game
if it searches to depth 4, ending with an average score of more than
50,000; however that is still not as high as the exhaustive search can
achieve at only depth 3.

It would have been interesting to compare the exhaustive and the
BFS (or Random search) algorithms at this size of tree as well, but
unfortunately this was not easy to test because of the way the search
algorithms were implemented. (The BFS algorithm is hard-coded to
search the tree to depth 3 in order to pre-allocate memory.)

However, the MCS has no such coding limit, and so we investigate
how its performance fares at deeper levels, in Figure 6. It is clear that
depth 4 is optimal for the MCS in this case. Searching down to depth
5 results in a final score that is actually lower than that achieved at
depth 3. In fact of the ten games, this version only manages to stay
the distance to 150 drops on half of them. The search to depth 6 is
even weaker still, with the game ending prematurely in most of the
games (8 of the 10). The search to depth 4 does play all games to the
limit of 150 drops, however, showing that it always has enough time
to at least keep the board fairly clear of blocks, even if not to reach a
top score.

Figure 5. Scores for MCS at depth 4, better than depth 3

The reason that deeper searches yield poorer performance is that
searching the lower layers takes time away from the higher layers.
This means that, although the estimates arrived at on some of the
first-level nodes are more accurate (because playout out for longer),
the estimates are on the whole underexplored, with first-level nodes
only holding data from a small number of simulated playouts. The
estimates are therefore less representative and reliable, and the best
moves are easily missed.

We conclude that it is crucial in real-time applications to test the
MC family algorithms at multiple levels, to find the best trade-off
between searching deep and searching often. Arriving at such an op-
timum by mathematical analysis alone would be challenging, so tun-
ing the algorithm by trial and error is the way to go.

Figure 6. Scores for MCS at lower depths — algorithm fails below level 4

6 Conclusion
A basic MCS algorithm was applied to a falling-blocks puzzle game
that challenges other AI techniques because it has a large search-
space, no clear strategy that can be expressed heuristically, and no
winning end state. The algorithm combined a uniform round-robin
search, of the top layer of the tree, with a Monte Carlo search of
child nodes down to a depth limit. It accumulated the leaf node scores
and kept the best ones to annotate the first-level nodes, so that the
algorithm could be interrupted at any time to select the best initial
move found so far.

Other standard search algorithms were compared, for the same
depth of tree down to the third layer, including an exhaustive search
that set the upper bound on what the best possible algorithm could
achieve. All the algorithms did fairly well except for DFS, which
was unable to cope with this game in real-time conditions, due to
its inherent bias in searching child nodes in its own arbitrary order.



Even the algorithms that did well showed that they paid a large cost
however, due to the time-pressure of the game.

While the MCS did not outperform BFS in that test, it did however
at least perform as well, showing that the MC approach, although in a
very simple form here, is an able alternative to other possible search
algorithms. With further research it should be possible to find specific
improvements to the MCS that can enable it to outperform the other
algorithms here.

A second question was how the MCS would perform at deeper
search limits. Searching down to depth 4 allowed it to attain a much
higher score, and it was still able to keep the games going for as long
as 150 moves, which was the maximum allowed in our experiment.
However deepening the search to limits of 5 and 6 gave much worse
performance than the previous trials at depth limits 4 and even 3. The
search a depth limit 6 was practically useless, not even managing to
finish most of the games. We conclude that it is necessary to tune MC
algorithms to the particular game that they are intended to play. Oth-
erwise it is possible to be mislead into thinking that the method is not
appropriate, only because it has not been given a fair trial with dif-
ferent search parameters like depth, in order to find its “sweet spot”
where it can perform well.

Monte Carlo methods in general, therefore, should probably be ex-
perimented with for any game or application, before judging whether
they are suited or not. In the future however, it would be nice to see
more analytical developments that would give us a better idea of how
successful MC algorithms might be in some application, without our
having to fall back all the time on trial and error.

REFERENCES
[1] Yngvi Björnsson and Hilmar Finnsson, ‘Cadiaplayer: A simulation-

based general game player.’, IEEE Trans. Comput. Intellig. and AI in
Games, 1(1), 4–15, (2009).

[2] Niko Böhm, Gabriella Kókai, and Stefan Mandl, ‘An evolutionary ap-
proach to tetris’, in 6th Metaheuristics International Conference (6th
Metaheuristics International Conference Wien August 22-26, 2005),
(2005).

[3] Bruno Bouzy, ‘Associating Shallow and Global Tree Search with Monte
Carlo for 9x9 Go’, in Proc. Int. Conf. Comput. and Games, LNCS 3846,
pp. 67–80, Ramat-Gan, Israel, (2004).

[4] Bruno Bouzy and Bernard Helmstetter, ‘Monte-carlo go develop-
ments’, in Advances in computer games, 159–174, Springer, (2004).

[5] Jeremy G Bridon, Zachary A Correll, Craig R Dubler, and Zachary K
Gotsch, ‘An artificially intelligent battleship player utilizing adaptive
firing and placement strategies’, The Pennsylvania State University,
State College, PA, 16802, (2009).

[6] Guillaume Maurice Jean-Bernard Chaslot, Mark H. M. Winands,
H. Jaap van den Herik, Jos W. H. M. Uiterwijk, and Bruno Bouzy,
‘Progressive Strategies for Monte-Carlo Tree Search’, New Math. Nat.
Comput., 4(3), 343–357, (2008).

[7] Colin Fahey. Tetris, 2003.
[8] Alexander Nareyek, ‘Ai in computer games’, Queue, 1(10), 58–65,

(February 2004).
[9] Craig W Reynolds, ‘Steering behaviors for autonomous characters’, in

Game developers conference, volume 1999, pp. 763–782, (1999).
[10] Sonic Team. Puyopuyo, 2009.


	Motivation
	MCS and MCTS for game AI

	The game Puyo-Puyo
	Monte Carlo Search (MCS) for PuyoPuyo
	Monte Carlo Tree Search (MCTS)
	A simple MCS algorithm to play PuyoPuyo

	Evaluation scheme
	Results
	Conclusion

