
Rejecting the Received View: Representation,
Computation, and Observer-Relativity

Joe Dewhurst1

Abstract. I defend Piccinini’s mechanistic account of
computation against three related criticisms adapted from
Sprevak’s critique of non-representational computation. I then
argue that this defence highlights a major problem with what
Sprevak calls the received view; namely, that representation
introduces observer-relativity into our account of computation. I
conclude that if we want to retain an objective account of
computation, we should reject the received view.12

1 INTRODUCTION
Sprevak [1] outlines what he calls “the received view” of
computation, which is apparently held by a majority of both
philosophical and scientific experts on computation. As he puts
it, this is the view that “a necessary condition on any physical
process counting as a computation is that it possesses
representational content” [1, p. 260]. He clarifies that what he
has in mind is a very minimal form of representation, involving
no more than “a basic notion of aboutness or reference [that]
should link an entity and a content” [1, p. 261]. Specifically, he
wants to avoid any mention of the kind of intentional content
that might “plausibly require the involvement of cognitive
agents” [1, p. 261]. Furthermore, it is in terms of individuation
rather than causal dynamics that representation should be
understood as necessary for computation [1, pp. 261-2]. This is
meant to avoid a line of criticism regarding causal irrelevance
that I will not pursue here.
 Thus the “battleground”, as Sprevak puts it, is whether
or not representation is necessary for computational
individuation. There have been several recent attempts at giving
alternative, non-representational, accounts of computation. I will
focus on Piccinini’s account, as I feel that it helps elucidate some
of the main problems with the received view. Specifically, it
points towards the introduction of observer-relativity as a result
of the received view’s representation requirement.

In brief, the mechanistic account claims that
computation consists solely in the manipulation of strings of
digits by a series of processors, and that both digits and
processors can be given a non-representational specification [2,
pp. 508-12]. Digits are individuated functionally, such that every
digit of the same type is manipulated in the same way by any
given processor-type. Similarly, processors are individuated in
terms of their interaction with digits. What makes these digits
and processors non-representational is that they function purely
by virtue of their physical interactions within the mechanism,
and require no further level of analysis. Whilst they can be given

1 Dept. of Philosophy, Univ. of Edinburgh, EH3 9AD, UK. Email:
joseph.e.dewhurst@gmail.com

a representational interpretation, this is not intrinsic to either
their mechanistic role or their individuation (see [3]).

In addition to the processor there might also be an
input device (to turn external stimuli into digits), a memory
device (to store strings of digits whilst they are not in use), and
an output device (to turn digits into a suitable output) [2, p. 514].
None of these components are strictly necessary for
computation, but it would be unusual to find a computing
mechanism that did not include them.

In defending the received view, Sprevak gives three
related arguments against non-representational computation. His
arguments are primarily aimed at Egan's mathematical theory of
computation, but he indicates that similar criticisms might be
made of the mechanistic account [1, p. 260]. I will reconstruct
each argument so as to apply directly to the mechanistic account,
and attempt to respond to them by clarifying certain key aspects
of the account.

2 PARADIGMATIC CASES
Sprevak's initial move is to draw attention to the role that
representational content appears to play in paradigmatic cases of
computation. He cites two cases: “Turing's mindless clerk” who
performs a mapping from ink-mark representations to other ink-
mark representations; and the electrical signals within an
electronic computer, which he claims represent both 0s and 1s as
well as whatever textual or pictorial information the computer is
processing [1, p. 267]. In both cases he notes that there is an
ambiguity between the representation of abstract numbers and
the representation of meaningful content. I will assume that
either outcome would be sufficient to refute the claim that
mechanistic computation is non-representational.

Sprevak admits that the apparently representational
nature of these paradigmatic cases of computation is “far from
conclusive”, but he takes it to be at least indicative of the role
that representational content plays in computation [1, p. 268]. He
argues that we should “keep the paradigmatic cases in mind”
when it comes to judging whether or not a given system is
computational [1, p. 268]. I agree that this is a viable tactic, and
we should note that it is one of Piccinini's criteria for assessing
accounts of computation [2, p. 502]. However it is only one
criterion out of six, and as such it should not be considered the
final arbiter of what constitutes computation. The mechanistic
account is intended to give independent grounds for assessing
computation, and crucially it aims to remain neutral on questions
of representational content. To presume that representational
content is essential to computation because of these paradigmatic
cases would beg the question against the mechanistic account.

It might turn out that all cases of physical computation
do involve representational content, but if the mechanistic

account is correct this would not be a feature of their being
computational systems, but rather a feature of whatever theory of
representational content we think is true. The question at hand is
not whether computational systems ever possess representational
content, but rather whether representational content is a
necessary requirement for something to be considered a
computational system. The two cases that Sprevak mentions
indicate that the former might be true, but say nothing conclusive
about the latter.

Both cases also rest on the supposedly representational
nature of two further features of computation: input/output
mapping and the individuation of digits. Sprevak presents
arguments for each, which I will consider below. If these
features turn out not to be representational, then the argument
from paradigmatic cases will be undermined, or at least
weakened. Without further support, our intuitions alone cannot
conclusively prove that computation is representational.

3 INPUT/OUPUT MAPPING

Sprevak's second argument provides an expanded analysis of the
input and output components in computing mechanisms. This
argument comes in two parts, which I will present and respond
to in turn.

As indicated above, paradigmatic cases of computation
are often described as transforming representational inputs into
representational outputs. It is Sprevak's contention that this
description, and the associated representational content of
computational states, is essential in order to arbitrate the status of
physically divergent computational systems.

In such cases, where two systems are physically very
different, it is a common strategy to say that they are computing
the same function if their inputs and outputs are
representationally equivalent. We cannot simply appeal to the
physical equivalence of the inputs and outputs, for this will differ
along with the systems themselves. For example, two systems
might perform the same calculation, but one could take electrical
signals as inputs and outputs, and the other could take marbles
[1, p. 268]. Sprevak's claim is that the reason we can identify
them as performing the same computation despite the difference
in input and output is that both the marbles and the electrical
signals have the same representational content. Therefore,
physical computation must be understood as inherently
representational in order to explain this kind of input/output
equivalence.

Under the mechanistic account, computational systems
are differentiated in terms of the functional structure of their
components. This means that two physically divergent systems
can be said to perform the same computation if and only if they
possess a relevantly similar structure. Of primary importance is
the organisation of the components that serve as digits and
processors. The input and output components are only of
secondary importance, insofar as they produce or receive strings
of digits. Hence whether a system's input comes in the form of
electrical signals or marbles is irrelevant to the computation that
it performs, which will be characterised solely in terms of the
processing of strings of digits.

As a result of this, the mechanistic account cannot
accommodate input/output equivalence in the sense that Sprevak
describes it. What makes input and output components
equivalent is their causal relationship to the internal structure of

the computing mechanism, rather than their relationship with the
external world. Regardless of whether or not we map the same
content to electrical signals and marbles, the mechanisms that
they interact with will only be computationally equivalent if the
structure of their digits and processors are equivalent. This
means that, perhaps contrary to our intuitions, two systems that
possess representationally equivalent input/output mappings
might nonetheless be computationally distinct.

Sprevak's second illustration makes the point clear.
Consider two computational systems, identical aside from their
inputs and outputs. One processes chess moves, and the other
makes stock market predictions. Their inputs and outputs appear
to differ, but there is a sense in which we want to say that they
are the same. As Sprevak puts it,

[w]e seem inclined to say that, in a sense, the two
processes compute different functions, yet in
another sense they are I/O equivalent. [1, p. 268]

“Appeal to representational content”, he continues,

“can accommodate both judgements” [1, p. 268]. They differ
insofar as the content of their inputs and outputs differ, but they
are equivalent because we can “easily interpret the two
processes so that they compute the same function” [1, p. 268,
emphasis in original]. Without the appeal to representational
content, we would apparently be unable to reconcile these two
intuitions.

The mechanistic account is only able to accommodate
the intuition that they are computing the same function. The
chess-playing computer and the stock-market-predicting
computer will be equivalent if and only if their internal
structures are equivalent. Insofar as they are processing digits in
the same way, the two systems are performing the same
computations. The implausibility of this scenario enhances our
intuition that the computations they are performing must be
different, but the nature of their inputs and outputs is irrelevant
to their computational equivalence. What use we put them to,
and what content they come to possess as a result of this, is
strictly irrelevant to their status as computing mechanisms.

Quite aside from being a weakness, this failure to
accommodate both intuitions indicates the capacity for the
mechanistic account to provide determinate answers in cases
such as this. Our intuitions may differ, but we should not always
trust intuitions, and the mechanistic account enables us to appeal
to an objective standard in determining the equivalence (or not)
of computational systems.

My response to this argument is reflected in Piccinini's
original formulation of the computing mechanism, which
consists only of a string of digits and a processor [2, pp. 508-12].
He notes that in practice computing mechanisms will typically
have additional components, including input and output devices,
but these are not essential to the basic functional description [2,
p. 514]. We can individuate computational states without making
reference to inputs and outputs, and are therefore able to
distinguish between equivalent and non-equivalent
computational systems without being misled by our intuitions
about representational content.

It should be reiterated here that the claim is not that the
representational content of inputs and outputs is completely
irrelevant, but only that it is irrelevant insofar as computation
itself is concerned. When it comes to attributing representational

content to computational states, we will inevitably look to the
content of the inputs and outputs to guide us. This is why we
differentiate between the chess-playing and stock-market-
predicting computers, and why in representational terms they are
non-equivalent. The point is that representational non-
equivalence should not be equated with computational non-
equivalence – the two systems are computationally equivalent
whilst possessing distinct representational content. Hence we
come to have divergent intuitions about whether or not they are
equivalent, because one intuition is based on our understanding
of computation, and the other on our understanding of
representational content. In demonstrating this, and clarifying
what it means for two systems to be computationally equivalent,
the mechanistic account of computation has done us a valuable
service. Equating input/output equivalence with computational
equivalence might have historically been a useful heuristic, but it
distracts us from what is genuinely important about
computational systems: the internal processing of digits, rather
than the external relationship between inputs and outputs.

4 INDIVIDUATING DIGITS
Sprevak's third argument is that in order to distinguish digits we
have to recognise that they possess at least a form of minimal
content. He presents the pair of tables that specify an AND gate
and an OR gate:

The output of an AND gate is 1 just in case both
inputs are 1 otherwise it is 0. The output of an
OR gate is 0 just in case both inputs are 0
otherwise it is 1. [1, p. 268, see tables 1 and 2]

a b a AND b
0 0 0
0 1 0
1 0 0
1 1 1

Table 1. AND gate

a b a OR b
0 0 0
0 1 1
1 0 1
1 1 1

Table 2. OR gate

This specification is familiar to both computability
theory and mathematical logic. He then presents a third table,
this time specifying a processor that takes a pair of inputs of
either 5V or 0V, and gives an output of 5V when both inputs
equal 5V, or otherwise 0V (see table 3). Is it an AND gate or an
OR gate?

Input a Input b Output

0 V 0 V 0 V
0 V 5 V 0 V
5 V 0 V 0 V
5 V 5 V 5 V

Table 3. AND gate, or OR gate?

At first glance we are inclined to say that it is an AND
gate, but there is in fact no principled way to answer this
question without introducing representational content. We have
to stipulate that 5 V = 1 and 0 V = 0 in order to determine that it
is an AND gate (or vice versa). Sprevak concludes that minimal
content is required in order to individuate computational states
[1, p. 269].

Sprevak is correct to note that without assigning
content it is impossible to non-arbitrarily distinguish 1s from 0s,
and AND gates from OR gates, but it does not follow that such
an assignment is required in order to individuate computational
states. All that is required is that we are able to identify distinctly
concatenated digits, and describe the way in which they are
processed. Whilst it is convenient for us to give this description
in terms of 1s and 0s, we could just as easily have given it in
terms of voltages, as in table 3. Brooks captures something of the
sense of what I mean when he writes that “[t]he best that can be
said [of computation] is that one number is passed from a
process to another” [4, p. 144], although in the case of
mechanistic computation it is digits rather than numbers that we
should speak of.

A voltage level does not represent the digit that it is
associated with – rather, it instantiates that digit. Talk of
computation in terms of 1s, 0s, AND gates, and OR gates takes
place at a higher level of abstraction than that which is strictly
required in order individuate computational states and
components. There is perhaps a sense in which computational
states come to acquire what Piccinini calls “the internal
semantics of the computer” [3, p. 214, emphasis in original], but
this is very different from how we normally understand
representational content. A processor treats all instantiations of
the same digit in the same way, and thus might be seen as
ascribing representational content to that digit, but this content
does not relate in any non-arbitrary way to our external
semantics. Piccinini illustrates this by describing a simple
instruction in a programming language: “UNTIL P TRUE DO __
ENDUNTIL” [3, p.215]. This causes the mechanism to do __
until the variable P has the value TRUE. However, TRUE here
does not strictly speaking mean anything in our external
semantics, aside from pointing to the state that P has to be in
stop to the mechanism doing __, and this state can be given an
entirely physical, non-representational description. We are able
to pick out the relevant computational states with this physical
description, and hence we are able to individuate them. Any
further content that we choose to ascribe to TRUE, or to P, or to
__, is entirely irrelevant to the individuation of computational
states and components.

To be clear, the claim being made here is that whether
a given physical system is computing AND or OR is completely
indeterminate from the perspective of computation alone. We
can only distinguish the two by attributing representational
content to the digits that they are processing, and this process of
external attribution is not essential to computation.

5 OBSERVER-RELATIVITY
Sprevak has expressed a concern that my reply to each of these
arguments contradicts the judgments of computer science experts
(pers. comm.). Whilst experts can be overruled, we need some
independent motivation to do so. This motivation can be found
in the fact that in each of the above cases representation

introduces an element of observer-relativity into computation. It
only makes sense to distinguish the chess-playing computer and
the stock-market-predicting computer from the perspective of an
external observer. By specification, they are internally identical.2
The same mechanism could be used for either function, and thus
all that differentiates them is the task that we use them for.
Similarly, the gate specified by table 3 is computing neither
AND nor OR until we attach labels to the digits that it processes.

My claim is that representation, at least in
computational systems, can only be specified with reference to
an external observer.3 Thus Sprevak is mistaken in assuming
that we can give an account of representation that avoids
involving external cognitive agents. If this is true, then we
should avoid making use of representational individuation if we
want to give an objective account of computation.4

Dennett presents a case that can be adapted to help
make my point clear. Consider a vending machine that was
originally designed to accept American quarters but will also
take Panamanian quarter-balboas, which happen to be the same
size, shape and weight [7, pp. 290-5]. To the vending machine
these two kinds of coins are simply indistinguishable, but to us it
makes a considerable difference which kind of coin the machine
accepts, as one is worth far less than the other. Imagine that there
is an internal state C that gets switched on whenever the machine
detects either of these types of coin. Any account of what kind of
coin this state represents is going to depend on factors external to
the machine, such as which country it is in and what kind of coin
it most regularly accepts. Thus the representational content of
state C is determined relative to an external observer, and is not
intrinsic to the machine itself.

The same goes for computational states and processes
in general – they only represent anything in virtue of an external
observer. Of course we can, and often do, give representational
specifications to computational states, but this only makes sense
relative to an observer, and has nothing to do with the
computational process itself. It also picks out nothing intrinsic to
the system – the same computation could mean something
different to two different observers, as in the case of the chess-
playing/stock-market-predicting computer.

If it is the case that representational properties can only
be specified with reference to an external observer, then using
them as the basis for an objective theory of computation seems
doomed to fail. The best we could do is to give a theory of
computation that is ‘objective’ only relative to a given
community of observers. It would be ‘objective’ in the sense that
there is an agreed specification of representational content, but
not in any universal sense. To give a truly objective theory of
computation we would have to reject the received view, and turn

2 Aside from their input/output components, which presumably must
differ according to whether they play chess or predict the stock market.
However, here Sprevak is caught in a dilemma: either these components
do not qualify as an essential part of the computing mechanism, or else
the two mechanisms are not identical.
3 In fact I think that the point generalizes beyond computation, but
making that additional argument is beyond the scope of this paper.
4 This claim is related to the familiar accusations of observer-relativity
made by Putnam [5] and Searle [6], although I feel that the mechanistic
account can limit the problem to representation, and thus avoid the full
weight of their criticisms.

to something non-representational, such as the mechanistic
account.

6 CONCLUSION
It must be admitted that this is only the beginning of an
argument for the claim that representation introduces observer-
relativity to computation. Arguments of this sort have tended to
be associated with anti-computationalist traditions such as
enactivism (e.g. [8]). This association appears to be something of
a historical artefact, due to the dominance of the received view
in recent decades. My hope is that by defending the mechanistic
account it might be possible to free computation from any
representational baggage, thus making it available for use by a
wider range of explanatory frameworks (both in cognitive
science and elsewhere).

There has been a huge amount of literature on
representation in recent decades, and so a comprehensive
argument for the observer-relativity of representation must be
postponed until a later date. My aim here is simply to motivate
the idea that a non-representational account of computation
would help us to avoid such issues entirely. If I am correct, we
must either reject the representational account, and thus the
received view, or else accept that computation is observer-
relative. As giving an objective account of computation has been
a major focus of recent literature, the first option would seem to
be the more attractive one.

REFERENCES
[1] M. Sprevak, “Computation, individuation, and the

received view of representation” in Studies in History
and Philosophy of Science, vol. 41, pp. 260-70, 2010.

[2] G. Piccinini, “Computing Mechanisms” in Philosophy
of Science, vol. 74, pp. 501-26, 2007.

[3] G. Piccinini, “Computation without representation” in
Philosophical Studies, vol. 137, pp. 205-41, 2008.

[4] R. Brooks, “Intelligence without representation,” in
Artificial Intelligence, vol. 47, pp. 139-59, 1991.

[5] H. Putnam, Representation and Reality. Cambridge,
MA: MIT Press, 1988.

[6] J. Searle, The Rediscovery of Mind. Cambridge, MA:
MIT Press, 1992.

[7] D. Dennett, The Intentional Stance. Cambridge, MA:
MIT Press, 1987.

[8] D. Hutto & E. Myin, Radicalizing Enactivism.
Cambridge, MA: MIT Press, 2013.

