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Abstract.  I defend Piccinini’s mechanistic account of 
computation against three related criticisms adapted from 
Sprevak’s critique of non-representational computation. I then 
argue that this defence highlights a major problem with what 
Sprevak calls the received view; namely, that representation 
introduces observer-relativity into our account of computation. I 
conclude that if we want to retain an objective account of 
computation, we should reject the received view.12 

1 INTRODUCTION 
Sprevak [1] outlines what he calls “the received view” of 
computation, which is apparently held by a majority of both 
philosophical and scientific experts on computation. As he puts 
it, this is the view that “a necessary condition on any physical 
process counting as a computation is that it possesses 
representational content” [1, p. 260]. He clarifies that what he 
has in mind is a very minimal form of representation, involving 
no more than “a basic notion of aboutness or reference [that] 
should link an entity and a content” [1, p. 261]. Specifically, he 
wants to avoid any mention of the kind of intentional content 
that might “plausibly require the involvement of cognitive 
agents” [1, p. 261]. Furthermore, it is in terms of individuation 
rather than causal dynamics that representation should be 
understood as necessary for computation [1, pp. 261-2]. This is 
meant to avoid a line of criticism regarding causal irrelevance 
that I will not pursue here. 
 Thus the “battleground”, as Sprevak puts it, is whether 
or not representation is necessary for computational 
individuation. There have been several recent attempts at giving 
alternative, non-representational, accounts of computation. I will 
focus on Piccinini’s account, as I feel that it helps elucidate some 
of the main problems with the received view. Specifically, it 
points towards the introduction of observer-relativity as a result 
of the received view’s representation requirement. 

In brief, the mechanistic account claims that 
computation consists solely in the manipulation of strings of 
digits by a series of processors, and that both digits and 
processors can be given a non-representational specification [2, 
pp. 508-12]. Digits are individuated functionally, such that every 
digit of the same type is manipulated in the same way by any 
given processor-type. Similarly, processors are individuated in 
terms of their interaction with digits. What makes these digits 
and processors non-representational is that they function purely 
by virtue of their physical interactions within the mechanism, 
and require no further level of analysis. Whilst they can be given 
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a representational interpretation, this is not intrinsic to either 
their mechanistic role or their individuation (see [3]). 

In addition to the processor there might also be an 
input device (to turn external stimuli into digits), a memory 
device (to store strings of digits whilst they are not in use), and 
an output device (to turn digits into a suitable output) [2, p. 514]. 
None of these components are strictly necessary for 
computation, but it would be unusual to find a computing 
mechanism that did not include them. 

In defending the received view, Sprevak gives three 
related arguments against non-representational computation. His 
arguments are primarily aimed at Egan's mathematical theory of 
computation, but he indicates that similar criticisms might be 
made of the mechanistic account [1, p. 260]. I will reconstruct 
each argument so as to apply directly to the mechanistic account, 
and attempt to respond to them by clarifying certain key aspects 
of the account. 

2 PARADIGMATIC CASES  
Sprevak's initial move is to draw attention to the role that 
representational content appears to play in paradigmatic cases of 
computation. He cites two cases: “Turing's mindless clerk” who 
performs a mapping from ink-mark representations to other ink-
mark representations; and the electrical signals within an 
electronic computer, which he claims represent both 0s and 1s as 
well as whatever textual or pictorial information the computer is 
processing [1, p. 267]. In both cases he notes that there is an 
ambiguity between the representation of abstract numbers and 
the representation of meaningful content. I will assume that 
either outcome would be sufficient to refute the claim that 
mechanistic computation is non-representational. 

Sprevak admits that the apparently representational 
nature of these paradigmatic cases of computation is “far from 
conclusive”, but he takes it to be at least indicative of the role 
that representational content plays in computation [1, p. 268]. He 
argues that we should “keep the paradigmatic cases in mind” 
when it comes to judging whether or not a given system is 
computational [1, p. 268]. I agree that this is a viable tactic, and 
we should note that it is one of Piccinini's criteria for assessing 
accounts of computation [2, p. 502]. However it is only one 
criterion out of six, and as such it should not be considered the 
final arbiter of what constitutes computation. The mechanistic 
account is intended to give independent grounds for assessing 
computation, and crucially it aims to remain neutral on questions 
of representational content. To presume that representational 
content is essential to computation because of these paradigmatic 
cases would beg the question against the mechanistic account. 

It might turn out that all cases of physical computation 
do involve representational content, but if the mechanistic 



account is correct this would not be a feature of their being 
computational systems, but rather a feature of whatever theory of 
representational content we think is true. The question at hand is 
not whether computational systems ever possess representational 
content, but rather whether representational content is a 
necessary requirement for something to be considered a 
computational system. The two cases that Sprevak mentions 
indicate that the former might be true, but say nothing conclusive 
about the latter.  

Both cases also rest on the supposedly representational 
nature of two further features of computation: input/output 
mapping and the individuation of digits. Sprevak presents 
arguments for each, which I will consider below. If these 
features turn out not to be representational, then the argument 
from paradigmatic cases will be undermined, or at least 
weakened. Without further support, our intuitions alone cannot 
conclusively prove that computation is representational.  

3 INPUT/OUPUT MAPPING 

Sprevak's second argument provides an expanded analysis of the 
input and output components in computing mechanisms. This 
argument comes in two parts, which I will present and respond 
to in turn. 

As indicated above, paradigmatic cases of computation 
are often described as transforming representational inputs into 
representational outputs. It is Sprevak's contention that this 
description, and the associated representational content of 
computational states, is essential in order to arbitrate the status of 
physically divergent computational systems.  

In such cases, where two systems are physically very 
different, it is a common strategy to say that they are computing 
the same function if their inputs and outputs are 
representationally equivalent. We cannot simply appeal to the 
physical equivalence of the inputs and outputs, for this will differ 
along with the systems themselves. For example, two systems 
might perform the same calculation, but one could take electrical 
signals as inputs and outputs, and the other could take marbles 
[1, p. 268]. Sprevak's claim is that the reason we can identify 
them as performing the same computation despite the difference 
in input and output is that both the marbles and the electrical 
signals have the same representational content. Therefore, 
physical computation must be understood as inherently 
representational in order to explain this kind of input/output 
equivalence. 

Under the mechanistic account, computational systems 
are differentiated in terms of the functional structure of their 
components. This means that two physically divergent systems 
can be said to perform the same computation if and only if they 
possess a relevantly similar structure. Of primary importance is 
the organisation of the components that serve as digits and 
processors. The input and output components are only of 
secondary importance, insofar as they produce or receive strings 
of digits. Hence whether a system's input comes in the form of 
electrical signals or marbles is irrelevant to the computation that 
it performs, which will be characterised solely in terms of the 
processing of strings of digits. 

As a result of this, the mechanistic account cannot 
accommodate input/output equivalence in the sense that Sprevak 
describes it. What makes input and output components 
equivalent is their causal relationship to the internal structure of 

the computing mechanism, rather than their relationship with the 
external world. Regardless of whether or not we map the same 
content to electrical signals and marbles, the mechanisms that 
they interact with will only be computationally equivalent if the 
structure of their digits and processors are equivalent. This 
means that, perhaps contrary to our intuitions, two systems that 
possess representationally equivalent input/output mappings 
might nonetheless be computationally distinct.  

Sprevak's second illustration makes the point clear. 
Consider two computational systems, identical aside from their 
inputs and outputs. One processes chess moves, and the other 
makes stock market predictions. Their inputs and outputs appear 
to differ, but there is a sense in which we want to say that they 
are the same. As Sprevak puts it,  

 
[w]e seem inclined to say that, in a sense, the two 
processes compute different functions, yet in 
another sense they are I/O equivalent. [1, p. 268] 

 
“Appeal to representational content”, he continues, 

“can accommodate both judgements” [1, p. 268]. They differ 
insofar as the content of their inputs and outputs differ, but they 
are equivalent because we can “easily interpret the two 
processes so that they compute the same function” [1, p. 268, 
emphasis in original]. Without the appeal to representational 
content, we would apparently be unable to reconcile these two 
intuitions.  

The mechanistic account is only able to accommodate 
the intuition that they are computing the same function. The 
chess-playing computer and the stock-market-predicting 
computer will be equivalent if and only if their internal 
structures are equivalent. Insofar as they are processing digits in 
the same way, the two systems are performing the same 
computations. The implausibility of this scenario enhances our 
intuition that the computations they are performing must be 
different, but the nature of their inputs and outputs is irrelevant 
to their computational equivalence. What use we put them to, 
and what content they come to possess as a result of this, is 
strictly irrelevant to their status as computing mechanisms. 

Quite aside from being a weakness, this failure to 
accommodate both intuitions indicates the capacity for the 
mechanistic account to provide determinate answers in cases 
such as this. Our intuitions may differ, but we should not always 
trust intuitions, and the mechanistic account enables us to appeal 
to an objective standard in determining the equivalence (or not) 
of computational systems.  

My response to this argument is reflected in Piccinini's 
original formulation of the computing mechanism, which 
consists only of a string of digits and a processor [2, pp. 508-12]. 
He notes that in practice computing mechanisms will typically 
have additional components, including input and output devices, 
but these are not essential to the basic functional description [2, 
p. 514]. We can individuate computational states without making 
reference to inputs and outputs, and are therefore able to 
distinguish between equivalent and non-equivalent 
computational systems without being misled by our intuitions 
about representational content.  

It should be reiterated here that the claim is not that the 
representational content of inputs and outputs is completely 
irrelevant, but only that it is irrelevant insofar as computation 
itself is concerned. When it comes to attributing representational 



content to computational states, we will inevitably look to the 
content of the inputs and outputs to guide us. This is why we 
differentiate between the chess-playing and stock-market-
predicting computers, and why in representational terms they are 
non-equivalent. The point is that representational non-
equivalence should not be equated with computational non-
equivalence – the two systems are computationally equivalent 
whilst possessing distinct representational content. Hence we 
come to have divergent intuitions about whether or not they are 
equivalent, because one intuition is based on our understanding 
of computation, and the other on our understanding of 
representational content. In demonstrating this, and clarifying 
what it means for two systems to be computationally equivalent, 
the mechanistic account of computation has done us a valuable 
service. Equating input/output equivalence with computational 
equivalence might have historically been a useful heuristic, but it 
distracts us from what is genuinely important about 
computational systems: the internal processing of digits, rather 
than the external relationship between inputs and outputs. 

4 INDIVIDUATING DIGITS  
Sprevak's third argument is that in order to distinguish digits we 
have to recognise that they possess at least a form of minimal 
content. He presents the pair of tables that specify an AND gate 
and an OR gate: 

 
The output of an AND gate is 1 just in case both 
inputs are 1 otherwise it is 0. The output of an 
OR gate is 0 just in case both inputs are 0 
otherwise it is 1. [1, p. 268, see tables 1 and 2] 

 
a b a AND b 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Table 1. AND gate 
 

a b a OR b 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

Table 2. OR gate 
 

This specification is familiar to both computability 
theory and mathematical logic. He then presents a third table, 
this time specifying a processor that takes a pair of inputs of 
either 5V or 0V, and gives an output of 5V when both inputs 
equal 5V, or otherwise 0V (see table 3). Is it an AND gate or an 
OR gate? 

 
Input a Input b Output 

0 V 0 V 0 V 
0 V 5 V 0 V 
5 V 0 V 0 V 
5 V 5 V 5 V 

Table 3. AND gate, or OR gate? 

At first glance we are inclined to say that it is an AND 
gate, but there is in fact no principled way to answer this 
question without introducing representational content. We have 
to stipulate that 5 V = 1 and 0 V = 0 in order to determine that it 
is an AND gate (or vice versa). Sprevak concludes that minimal 
content is required in order to individuate computational states 
[1, p. 269]. 

Sprevak is correct to note that without assigning 
content it is impossible to non-arbitrarily distinguish 1s from 0s, 
and AND gates from OR gates, but it does not follow that such 
an assignment is required in order to individuate computational 
states. All that is required is that we are able to identify distinctly 
concatenated digits, and describe the way in which they are 
processed. Whilst it is convenient for us to give this description 
in terms of 1s and 0s, we could just as easily have given it in 
terms of voltages, as in table 3. Brooks captures something of the 
sense of what I mean when he writes that “[t]he best that can be 
said [of computation] is that one number is passed from a 
process to another” [4, p. 144], although in the case of 
mechanistic computation it is digits rather than numbers that we 
should speak of.  

A voltage level does not represent the digit that it is 
associated with – rather, it instantiates that digit. Talk of 
computation in terms of 1s, 0s, AND gates, and OR gates takes 
place at a higher level of abstraction than that which is strictly 
required in order individuate computational states and 
components. There is perhaps a sense in which computational 
states come to acquire what Piccinini calls “the internal 
semantics of the computer” [3, p. 214, emphasis in original], but 
this is very different from how we normally understand 
representational content. A processor treats all instantiations of 
the same digit in the same way, and thus might be seen as 
ascribing representational content to that digit, but this content 
does not relate in any non-arbitrary way to our external 
semantics. Piccinini illustrates this by describing a simple 
instruction in a programming language: “UNTIL P TRUE DO __ 
ENDUNTIL” [3, p.215]. This causes the mechanism to do __ 
until the variable P has the value TRUE. However, TRUE here 
does not strictly speaking mean anything in our external 
semantics, aside from pointing to the state that P has to be in 
stop to the mechanism doing __, and this state can be given an 
entirely physical, non-representational description. We are able 
to pick out the relevant computational states with this physical 
description, and hence we are able to individuate them. Any 
further content that we choose to ascribe to TRUE, or to P, or to 
__, is entirely irrelevant to the individuation of computational 
states and components.  

To be clear, the claim being made here is that whether 
a given physical system is computing AND or OR is completely 
indeterminate from the perspective of computation alone. We 
can only distinguish the two by attributing representational 
content to the digits that they are processing, and this process of 
external attribution is not essential to computation. 

5 OBSERVER-RELATIVITY 
Sprevak has expressed a concern that my reply to each of these 
arguments contradicts the judgments of computer science experts 
(pers. comm.). Whilst experts can be overruled, we need some 
independent motivation to do so. This motivation can be found 
in the fact that in each of the above cases representation 



introduces an element of observer-relativity into computation. It 
only makes sense to distinguish the chess-playing computer and 
the stock-market-predicting computer from the perspective of an 
external observer. By specification, they are internally identical.2 
The same mechanism could be used for either function, and thus 
all that differentiates them is the task that we use them for. 
Similarly, the gate specified by table 3 is computing neither 
AND nor OR until we attach labels to the digits that it processes. 

My claim is that representation, at least in 
computational systems, can only be specified with reference to 
an external observer.3  Thus Sprevak is mistaken in assuming 
that we can give an account of representation that avoids 
involving external cognitive agents. If this is true, then we 
should avoid making use of representational individuation if we 
want to give an objective account of computation.4 

Dennett presents a case that can be adapted to help 
make my point clear. Consider a vending machine that was 
originally designed to accept American quarters but will also 
take Panamanian quarter-balboas, which happen to be the same 
size, shape and weight [7, pp. 290-5]. To the vending machine 
these two kinds of coins are simply indistinguishable, but to us it 
makes a considerable difference which kind of coin the machine 
accepts, as one is worth far less than the other. Imagine that there 
is an internal state C that gets switched on whenever the machine 
detects either of these types of coin. Any account of what kind of 
coin this state represents is going to depend on factors external to 
the machine, such as which country it is in and what kind of coin 
it most regularly accepts. Thus the representational content of 
state C is determined relative to an external observer, and is not 
intrinsic to the machine itself.  

The same goes for computational states and processes 
in general – they only represent anything in virtue of an external 
observer. Of course we can, and often do, give representational 
specifications to computational states, but this only makes sense 
relative to an observer, and has nothing to do with the 
computational process itself. It also picks out nothing intrinsic to 
the system – the same computation could mean something 
different to two different observers, as in the case of the chess-
playing/stock-market-predicting computer. 

If it is the case that representational properties can only 
be specified with reference to an external observer, then using 
them as the basis for an objective theory of computation seems 
doomed to fail. The best we could do is to give a theory of 
computation that is ‘objective’ only relative to a given 
community of observers. It would be ‘objective’ in the sense that 
there is an agreed specification of representational content, but 
not in any universal sense. To give a truly objective theory of 
computation we would have to reject the received view, and turn 
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to something non-representational, such as the mechanistic 
account.  

6 CONCLUSION 
It must be admitted that this is only the beginning of an 
argument for the claim that representation introduces observer-
relativity to computation. Arguments of this sort have tended to 
be associated with anti-computationalist traditions such as 
enactivism (e.g. [8]). This association appears to be something of 
a historical artefact, due to the dominance of the received view 
in recent decades.  My hope is that by defending the mechanistic 
account it might be possible to free computation from any 
representational baggage, thus making it available for use by a 
wider range of explanatory frameworks (both in cognitive 
science and elsewhere).  

There has been a huge amount of literature on 
representation in recent decades, and so a comprehensive 
argument for the observer-relativity of representation must be 
postponed until a later date. My aim here is simply to motivate 
the idea that a non-representational account of computation 
would help us to avoid such issues entirely. If I am correct, we 
must either reject the representational account, and thus the 
received view, or else accept that computation is observer-
relative. As giving an objective account of computation has been 
a major focus of recent literature, the first option would seem to 
be the more attractive one. 
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