What is the Role of the Observer
in a Computation?

Peter Leupold'

Abstract. Computing by Observing is a model of computation that
was inspired by the way experiments in the natural sciences are con-
ducted. An observer writes a kind of protocol of some process, and
this is the result, in our case of the computation. We explore in how
far this notion of observer can reveal relevant facts for answering the
question whether all computation is observer-relative in the sense of
Searle.

We first argue that the observer must be allowed to do a little com-
puting itself. If this is allowed, then rather simple processes can in-
deed be used as the central part of any computation, namely context-
free rewriting processes. This gives some support to Searle’s claim
that just about anything can be seen as a digital computer. Further,
there is one process that, with different observers, can be interpreted
to compute any recursively enumerable function. So what is com-
puted, is extremely relative to the observer in this case.

1 OBSERVATIONS ON THE OBSERVATION OF
A SIMPLE COMPUTATION

We want to explore the role of an observer in a computation. But at
a first look it seems that an observer does not form an integral part
of the process of computing at all. Only the agent or mechanism that
executes some rules of calculation seems to be necessary to compute
something. To motivate our study, let us first look at a simple example
of something that probably most of us will immediately recognize
and accept as an example for a computation.

Suppose that we observe a person writing down the following se-
quence of symbols from left to right and top to bottom:

X Y
7z
Z X

The most probable consequence is that we will believe that we have
observed this person doing an addition like 29 + 3 = 32 or 59 +
6 = 65 with the letters representing the respective digits. But these
solutions only work in the decimal system that we are used to or in
number systems of a higher base; with a smaller base, there is no
number 9.

So for example an observer, who is more accustomed to numbers
in base 8, would probably first arrive at one of the interpretations
274 3 = 32 or 57 4+ 6 = 65, because these are closer to his expe-
riences and expectancies. The first point to note here is that different
observers can interpret one and the same process as different calcu-
lations.

L University of Leipzig, Institute of Informatics, Germany, eMail:

leupold @informatik.uni-leipzig.de

Secondly we note that in order to interpret the writing as a compu-
tation, the observer must be able to interpret not only the final result
but the entire process. If someone simply spits out a number, there
is no way of telling whether it has been computed in some way, or
whether it is just produced randomly. So if the observer wants to
judge, whether something is a computation at all, he must answer the
more specific question what is computed. Without the meaning, com-
putation and random symbol manipulations cannot be distinguished.
We only consider the example from above a computation, if we are
able to find digits that substitute the letters in a sensible way, i.e. if
we manage to assign an interpretation to the steps of the process we
witness.

This makes a point similar to the one of the Chinese Room argu-
ment, which in Searle’s own words showed that ‘... semantics is not
intrinsic to syntax’ [12]. In our example different semantics can be
assigned to the syntax. We can conclude that there is not one spe-
cific semantics that is intrinsic to the sequence of symbols, i.e. to the
syntax.

However, when Searle speaks about observer-relativeness, he lo-
cates this between the levels of syntax and the physical implementa-
tion of this syntax. Thus our example does not yet bring us closer to
his conclusion that ‘There is no way you could discover that some-
thing is intrinsically a digital computer because the characterization
of it as a digital computer is always relative to an observer who as-
signs a syntactical interpretation to the purely physical features of
the system.” Because in our example syntax and the physics beneath
it basically coincide, it does not serve to distinguish between these
two levels. Nonetheless we want to exploit it a little bit more.

Basically the calculation (or: the manipulation of symbols) that we
have described can be done by many different agents in similar ways:
by a person as the computer that Alan Turing intended to describe,
by a Turing Machine or other formal models of computation, and
also by electronical computers as we use them. In all these cases an
observer could interpret the process in different ways. So is computa-
tion observer-relative in a different sense? Can every computational
process be interpreted as many different computations depending on
the way it is observed? We could adopt two opposing points of view
on this question.

The first point of view is along the lines we have argued so far: Ob-
viously the two observers attribute different meanings to the process
they observe. So there can be no doubt about the fact that the opinion
on what is computed is observer-relative. Different observers asso-
ciate different computations with one and the same process, when
they observe it. However, the two observers described above agree in
their judgment that something is computed. Both regard the writing
of the symbols as a computation.

A third observer might attribute still another computational mean-



ing to this process. Or, if he is not familiar with this method of ad-
dition, he might not be able to interpret the process in any way as a
computation. So clearly, there is not one computation intrinsic to this
calculation. It becomes a specific computation only by virtue of the
observer’s interpretation.

But if nothing is computed at all in the view of the third observer,
is there computation —not a specific one— intrinsic to the process that
is observed? One could argue, that this is not the case, and this is
roughly the point of view of Searle [12]. He actually argues that this
cannot be case at all, since computation is not an intrinsic feature
of the world. It only arises, when somebody —the observer— gives a
meaning to the process that is observed.

On the other hand, one might argue that the observer here is more
than a mere observer. Even translating the string 32 into a number
requires the computation 3 - 10 + 2 in the decimal system; similarly
65 in base eight is translated into a number via 6 - 8 + 5 = 53. For
the decimal system we usually do not need to think about this kind
of calculation, since we are so used to this system. But even for a
two digit octal number most humans will need to compute seriously,
which illustrates more clearly that even reading and understanding a
number requires some computation. It is worth noting that addition
and multiplication, which are necessary here, are not mere transduc-
tions, i.e. they cannot be done by standard transducers. So more than
regular computational power is necessary to execute them.

Thus the difference in interpretations of the process from above
is not merely in the observations. Rather, we have computations that
consists of two parts. The first part is done by the observed computer,
the second one by the observer, which is just another computer. Since
the second part is different for the two observers, we actually deal
with two different computations that just share one common part. As
soon as we arrive at a number, that is, the idea of the number in the
observer’s mind, there cannot be any ambiguity any more. From this
point of view, there is nothing observer-relative about computation.

However, this kind of computation exists only for the agent think-
ing about it. To communicate about it with others, he would have to
translate it into some kind of syntax that others can see. And they
would have to be able to interpret this syntax just as the observers in
our example from above.

The question here is what we call a computation. Do syntactical
manipulations as as the addition above count as computations? Or is
a computation only the entire mapping from one mathematical con-
cept to another? And must the assignment of meaning to the syntax
be completely direct, or is a little bit of computation allowed in this
process? Of course, the answer to these questions is fundamental for
answering the question, whether all computation is observer-relative.

From our example we deduce the following: most people would
say that the main part of the computation was done by the agent
writing down the symbols, not by the observer. So it makes sense
to allow some simple calculations to be done by an observer, if we
want to capture the intuitive meaning of computation. Now the role
of the observer is a crucial factor, when we speak about observer-
relativeness. What is an observer allowed to do? What does it mean
to observe? Observing the digit 5 lets us think of the correspond-
ing number in a more direct way than observing 5534; and for octal
numbers the way from reading to understanding the number is still
less direct. Where do we draw the border between observation and
computation?

We will now try to give some formal answers to these questions.
Before we start, we should note that our example is still a crude sim-
plification of the situation for Observer Systems, which we will now
introduce. In all of the above interpretations, XY + Z = Z X is just

one instantiation of the function called addition. But an instance of a
model of computation normally specifies an entire function with its
infinitely many possible inputs.

2 COMPUTING BY OBSERVING

First off, let us again point out the following about the example from
Section 1. In order to recognize that something has been computed,
we need to look at all the notes that have been taken. Since they are
relatively complete, we can reconstruct the rules that the computer
followed.

If we do not understand the rules behind what is happening, it is
hard to distinguish a computation from just random symbol manip-
ulations. We may as well say that for us nothing is computed unless
we know what is computed, because otherwise we cannot know the
meaning of the result. Thus we need to see the process in a rather
complete way. Suppose the computer in the introductory example
had done a bigger part of the calculation only in his head. We could
only give meaning to what we observe by doing the calculation again
ourselves.

A somewhat similar situation is the standard setup of an experi-
ment in the natural sciences. Take, for example, the relation between
the population sizes of hunter and prey. From observing the popu-
lation numbers over a long period of time, one can infer the rules
that this dynamic equilibrium follows. This role of an observer that
logs certain values produced by a process is essential to most exper-
iments. Without this extraction of data there would be no extraction
of knowledge.

With this we come to the field of Natural Computing. Its goal is
the use of mechanisms present in nature for computing. Biochemi-
cal reactions changing DNA strands are an example for a candidate
mechanism for building a whole new kind of computer. Many times it
is even claimed that there is already some computation present in na-
ture that we only need to discover. For example, Landweber and Kari
say that ‘.. .ciliated protozoans of genus Oxytricha and Stylonychia
had solved a potentially harder problem using DNA several million
years earlier’ [10]. Since they probably do not attribute any intention
or understanding to the ciliate cells, this sounds as if for them com-
putation was an intrinsic feature of the processes that happen in these
cells. Later though, they slightly relativize this point of view and say
that ‘in principle, these unicellular organisms may have the capac-
ity to perform at least any computation carried out by an electronic
computer.’

Normally, the new models for computation that are based on bio-
chemical phenomena present in nature follow the standard paradigm
of Computer Science: an input is transformed into an output by some
kind of process(or) that follows a certain programme or a set of rules.
The output constitutes the result. This is the common approach from
Adleman’s seminal experiment [1] to the many theoretical models
that have been designed since then [11, 8].

So there is a big difference between the ways in which com-
puter scientists and researchers from experimental sciences “use”
biochemical systems or abstractions thereof. Computer Science em-
ploys biochemical reactions, but does so in a different way from those
scientists that have dealt with these phenomena for a much longer
time. In the light of this, Matteo Cavaliere and the present author
asked themselves, how one could formalize the role of the observer
in an experiment that is so important, when scientists want to gain
information about processes in nature. Or in other words: how could
one compute with biochemical systems using the methods that are
used by those people who have dealt with these kinds of systems for



output:

| [observation 1] [observation 2] [observation 3] [observation 4]

-

—

observer

—> | configuration 2] — [conﬁguration 3] — [conﬁguration 4} —

input

Figure 1. Schematic representation of a transducing observer system.

a much longer time than the ones who are aspiring to build biocom-
puters or to discover computation in nature?

The result was the paradigm called Computing by Observing that
is inspired by the setup of experiments in the natural sciences. Figure
1 depicts the role of a separate observer in this architecture. As in
most models of computation —be they standard ones or bio-inspired
ones— there is a system that evolves from one configuration to another
in discrete steps. This system starts working on the input. However,
the output is not produced directly by this system. Rather, each con-
figuration of the system is read by an observer that maps it to a let-
ter. The concatenation of all these letters until the underlying system
stops is then the result of the computation. Just like a sequence of
(pairs of) numbers is the result of observing hunter and prey popula-
tions.

Thus the computation of the underlying system can work on data
in any kind of format as long as the observer can read this format. For
example, in the initial work on the topic Membrane Systems formed
the underlying systems [5]. Their configurations are represented by
multisets. Just as well, there could be a Turing Machine in the role of
the underlying system. Then the observer would look at its state and
its tape after every step that the machine takes.

In some sense the result that is produced by the observer is an
abstraction of the entire computation. We assign one (or none) of
finitely many letters to each one of the infinitely possible configura-
tions of the underlying system. Thus we put them into one of finitely
many equivalence classes. The final result is then isomorphic to a
sequence of classes of configurations rather than to the sequence of
configurations. Thus we lose some information, which in the best
case is like losing the intermediate notes of a calculation and retain-
ing only the final result.

Another important point is that we usually give the observer the
possibility to stop a computation. That is, after reading a configura-
tion it cannot only produce an output letter, but also a special output
L that immediately invalidates the entire result. In this way, the ob-
server can separate good or meaningful computations from bad ones.

The first central question addressed in work on Computing by Ob-
serving has been the following: Is it possible to go beyond the com-
putational power of the components by combining them in this way?
Only then the additional effort would be justified. For example, if
we already had Turing Machines as underlying systems, adding the

observer could obviously not lead to an increase in computational
power. The further the underlying system is from being computation-
ally complete, the bigger the increase can be. So the question was if
the architecture can lead to a gain in computational power and how
big this gain can be?

Many different bio-inspired models and also plain string-rewriting
systems were used to explore possible increases in power. Without
entering into detail on this topic, the most common pattern was the
following one: regular observers with underlying systems of context-
free power sufficed to attain computational completeness, for exam-
ple in the cases of grammars and string-rewriting systems [6, 7].
There were two exceptions to this. For sticker systems [2] and in-
sertions systems [9] already systems of regular power were sufficient
to compute everything that is Turing-computable. And, of course,
sometimes there is no increase in power.

These differences raised another question: can we identify key fea-
tures in the underlying systems that are crucial for a big increase in
computational power? There seem to be two very important features.
The first one is the ability to expand without limit the space that is
used. Just like any class of Turing Machines with a space bound can-
not be computationally complete, an observer system needs the abil-
ity to use an unlimited amount of space. For example, If this space
is fixed or linearly bounded for a string-rewriting system, then this
system and any regular observer can easily be simulated by a linear
bounded automaton.

The second feature that is always present in the underlying system,
when we observe a big increase in computational power is unlimited
re-usability of the working space. For instance, for a string-rewriting
system this means that the contents of a position can change arbi-
trarily often. In such a system, the only processing is the rewriting
done by the rules. So information that is not rewritten any more can-
not have any influence on the further evolution of the computation.
Because we have only finitely many letters, frequent rewriting will,
of course, eventually lead to a repetition in that position. But the
relevant information is not only in the symbol itself, but also in the
sequence it runs through. So unlimited access to the information that
has been produced is essential.

Looking again at a linear bounded automaton, if we put a constant
bound on the number of times that it can rewrite its cells, this fur-
ther limits its computational power. So the key features for attaining



computational completeness via Computing by Observing can also
be recognized in classical models like the Turing Machine.

3 THE ROLE OF THE OBSERVER IN
OBSERVER SYSTEMS

Without going into technical details, we have stated that the ob-
servers that were used always had regular computational power. So
they were quite simple. They could not even do the additions and
multiplications that are necessary to convert a decimal representation
of a number into a number as we have mentioned in Section 1. Now
we can ask the question whether there are cases, in which computa-
tions of the underlying system can be interpreted in different ways
like in our introductory example.

Before answering this question, we again want to point out a weak-
ness of the introductory example: The ambiguity works only for spe-
cific combinations of digits. By looking at several different additions
we could eventually see that there is only one number system where
all of them work. Already the number of distinct digits that appear
would tell us with high probability, in which base the calculation is
done.

For making our point, the example was good enough. But now we
want to say that a system computes different functions depending
on how it is observed. This means that these distinct observers must
map every input to the corresponding output of the function that is
computed. We give an example for such a case. To this end we need to
enter into a little more detail about the definition of the instantiation
of the Computing by Observing architecture that we will use.

An accepting observer system consists of a string-rewriting system
and a monadic transducer. So the input is a string, and the rewriting-
system works on that. It consist of rules of the form v — v. Their
application replaces an occurrence of v in a string by v. For example,
aabb can be converted to abab by the rule ab — ba. For more detail
on this topic the reader may refer to the monograph of Book and Otto
(3].

As described in Section 2, a monadic transducer must map every
intermediate string to a symbol. It is just a finite automaton, with a
one-letter output associated to each state. After reading a string, it
outputs the letter associated to the state it has stopped in. The con-
catentation of these symbols determines, whether the input string is
accepted or not. That is, if the observation belongs to a given regular
language, then the corresponding input is accepted, otherwise not.
As usual, an input is accepted if there exists at least one accepting
computation for it. For more details on accepting observer systems
the reader may consult the article of the present author with Matteo
Cavaliere, where these systems were introduced [7].

In our example, the underlying system is the string-rewriting sys-
tem with the four rulesa — A, A — b, b — B, and B — C, and
the input words consist only of the letters a and b. Configurations
of such a system are simply strings. First we construct an observer,
with which this system can recognize words of the form a"b", i,e. a
number of a followed by the same number of b.

The interesting computations in this case mark the left-most a by
rewriting it to A; then they do the same to the left-most b by rewriting
it to B. If both types of markings can be done the same number of
times, obviously the original number of a and b was the same. The
role of the observer consists mainly in filtering out those computa-
tions, where the string-rewriting rules are not applied in exactly the
manner just described. This is why all the rewritings are done in two
steps, for example b — B — C' instead of directly rewriting b — C.
In this way, every rewriting leaves a kind of trace (in this case the

letter B) in a configuration and can thus be detected by the observer.
In detail, the observer realizes the following mapping:

ifweatb’

ifw € b*Aa*c*b*
ifw € b* Aa*c* Bb*
ifw € b*a*c*Bb*
ifw € b a™c*b”
ifw € b*ch

ifwe b*Bet

1 else

> P B W N =N

Here we use regular expressions to specify the languages and A de-
notes the empty word. The words that are mapped to I are input
words that have the correct order of symbols, i.e. only a followed by
only b. The words mapped to numbers 1 to 4 correspond to the four
phases of marking and rewriting one a and one b as described above.
If we arrive at a string mapped to &, the numbers of a and b were the
same. Then it remains to rewrite all b to ¢, because the system has to
stop in order to accept. Since there is no rule that rewrites c, a string
of only c brings the system to a halt.

So the observations that lead to acceptance of the input string have
the form 1(1234)*@®™ and thus form a regular language. The lan-
guage accepted by the system is {a"b™ : n > 0}. Now we want to
use the same string-rewriting system with a different observer to ac-
cept the following language: all the strings a” where p is a prime. We
use the facts that multiplication is repeated addition and that addition
is just concatenation for unary numbers. Thus for every number k
the string a” can be factored into a® - a’ - - - a* for every divisor of
k. Therefore k is a prime if and only if such a factorization with
1 < 7 < k can be found.

The string-rewriting system realizes the following algorithm:
guess a divisor d of the length of the input word. Rewrite the first
d letters a to A and then to b. Now rewrite the left-most a to A, the
left-most b to B and so on until all b are gone. Then all A are rewrit-
ten to b and all B to c. In this way we again arrive at a suffix of d
letters b followed only by a. Iterating this, we rewrite the entire word
to ¢ with a final suffix of b only if the length is a multiple of d.

In this case the observer mapping is as follows:

ifwe A*aT Ub Ata™
ifwebbTa™

ifw € c*b*Bc*a*

ifw € c*b*Bc* Aa™
ifw € c*b*c" Aa”

ifw e c*btetb a”
ifwecbta™

ifwe b’

ifwe ¢ BbT

else

> P R W R Uy

—

While the divisor is guessed, strings are mapped to I. When a string
of class S is reached, the check for divisibility starts. The part bb™
guarantees that we have not guessed the trivial divisor one, the pres-
ence of more a guarantees that we have not guessed the number itself.
The rewriting of the letters b is started at the right end of the block.
Otherwise the border between the two blocks would not remain clear
after the first a is rewritten to b. We run through the phases 1 to 4
until the last iteration where the final configuration is mapped to F'.



If there are no more a left, which means we have found a divisor, the
resulting observation is . Then we only need to replace the remain-
ing b by c so the systems stops, just like in the example above.

So a word is accepted if the observation belongs to the language
I1S[(1234) T (123F)]*[(1234) " (123®)]d*. If the input is not of
prime length, then at some point there cannot be a 2 after a 1. So
only the desired words are accepted.

What we have seen is that we can accept very different languages
with the same string-rewriting system and different observers. So we
have generalized the example from Section 1 from the calculation of
one specific addition to the general notion of function as it is used in
computability theory.

It is worth noting that the string-rewriting system we have used is
extremely simple. Its rules only replace one single letter by another.
The context cannot play any role, and the length of the string remains
constant, when such a rule is applied. This type of string-rewriting
systems is called a painter system. Taken by itself, such a system
cannot compute much. To be more precise, a language is accepted
by a painter system, iff it can be represented as A* BA* where A
and B are arbitrary subsets of the alphabet. In the Computing by
Observing architecture, however, all context-sensitive languages can
be computed with these systems [7]. It is also clear that nothing more
can be computed, because the working space is fixed and cannot be
expanded.

After these two examples, it is clear that the string-rewriting sys-
tem used above could also be used to accept many other languages.
Straight-forward examples are {a"b"a™ : n > 0} or the language of
all words that contain the same number of a and b. In general, there
is no limit to the number of languages that can be accepted with the
same underlying system.

The strongest result that generalizes our example is Theorem 3 in
the work of Cavaliere, Frisco, and Hoogebom [4]. They construct a
single rewriting system S that is universal in the following sense: for
every Turing-computable language L there exists an observer, such
that L is computed by S in combination with the specific observer.
It is worth noting that the underlying rewriting system by itself,
i.e. without the observer interpreting its derivations, is by no means
Turing-complete. It has only context-free computational power.

So it is really the combination of the two components that yields
the power. The underlying system cannot, for example, decide in a
first step non-deterministically which language it computes, and then
compute it like most universal Turing Machines do. The computa-
tional completeness really arises only from the interplay between S
and the different observers that allow only the simulation of one spe-
cific Turing Machine each. But for every machine there is one fitting
observer.

The result of Cavaliere, Frisco, and Hoogebom tells us that one
and the same process can be used for doing the main part of any com-
putation that is possible at all in the sense of Turing. In other words:
more observer-relativeness is not possible in this context. Note, how-
ever, that the system itself is only a context-free grammar and thus
very simple in its structure. It uses only two kinds of rules.

There are the very simple rules of the form a — b that only replace
one letter by another. This is the kind of rule we have used in our
example above and that is called painter rules. Secondly, as we have
mentioned above, there must be a way of expanding the working
space in order to reach computational completeness. This is done by
rules a — bc that replace one letter by two letters. Nothing more
is necessary to obtain the universal system. Actually, it is sufficient
to have a single rule @ — a0, where O is the new space that is
introduced, and the other symbol stays the same. Apart from this we

only need painter rules.

a — band a — bc are two very simple patterns that —with a little
phantasy— can be found in almost any place in nature. For instance,
we can take biochemical reactions. a — bc could be the splitting
up of a larger molecule, a — b could be a change in the folding of
a protein. Looking only at the molecules and disregarding matters
like energy that is set free or bound, this would be quite direct im-
plementation of the rules. If we monitor just one organic molecule
in a solution of many molecules, the rule @ — a0 mentioned above
could simply be the appending of another molecule at a certain point,
for example the addition of one more base to a DNA strand.

Another instance would be cloud formation, droplets and ice crys-
tals of different sizes form, collide, combine etc. a — b could for-
malize freezing, melting, or a change in the crystal formation or the
kinetic energy; we only have to divide these features in into discrete
intervals to obtain a finite number of symbols. The splitting up of a
droplet or crystal gives us a rule a — bc.

Of course, in both cases we have to abstract away from many de-
tails to see certain phenomena as instantiations of our rules. However,
the same kind of abstraction is necessary when we look at human or
electronic computers and interpret their syntactical manipulations as
computations. Thus the result of Cavaliere, Frisco, and Hoogebom
gives string support to Searle’s claim that just about anything can be
viewed as a digital computer.

4 WHAT CAN WE LEARN FROM COMPUTING
BY OBSERVING?

After this technical excursion we now come back to the question,
whether computation is always observer-relative. We have claimed
at the end of Section 1 that there must indeed be some observer, if
we do not regard purely syntactical manipulations as computations.
A meaning is given to them only by some observer.

And what is more, this observer must basically understand the
computational process and do a little bit of computation itself. As
a side note we add that this understanding can be replaced by be-
lief or trust. This is what happens for instance with most computer
programmes. Users believe what the instruction manual or the pro-
gramme’s window on the screen tells them about what the pro-
gramme has actually computed or can compute. Only if they trust
that this is true the result has a meaning for the users. So the obser-
vation is replaced by belief. If there is no such description or similar
knowledge from other sources, then we cannot use the result of a
computer programme, let alone judge whether really a computation
has been executed.

But if the observer has some basic abilities, in our case just those
of a finite automaton, then even very simple processes can be in-
terpreted as computations. What is more, even all the computable
functions can then be computed by one and the same process. Of
course, we cannot claim that these simple observers really under-
stand the computation they observe. Rather, this understanding must
have been present in the person, who designed or programmed them.
But our monadic transducers still give a formal description of the
way, in which a human can assign meaning to the observed process.

It has become clear that one and the same process can serve for
many different computations. This is true not just in one instance like
in our introductory example, but for entire functions. So there is def-
initely not one computation intrinsic to each computational process.
This indicates that computation is not an intrinsic property of phys-
ical objects or processes at all. Rather it depends on the knowledge
and phantasy of the observer, whether he can discover computation



in a given process.

ACKNOWLEDGEMENTS

The present author wishes to acknowledge the contributions of Mat-
teo Cavaliere to the technical work that constitutes the basis for the
observations laid out here. Figure 1 was drawn by Norbert Hunde-
shagen.

REFERENCES

(1]
(2]

(3]
(4]

[5]

(6]

(71
(8]

(91

[10]

(1]

[12]

L.M. Adleman, ‘Molecular computation of solutions to combinatorial
problems’, Science, 226, 1021-1024, (1994).

Artiom Alhazov and Matteo Cavaliere, ‘Computing by observing bio-
systems: The case of sticker systems’, in DNA, eds., Claudio Ferretti,
Giancarlo Mauri, and Claudio Zandron, volume 3384 of Lecture Notes
in Computer Science, pp. 1-13. Springer, (2004).

R. Book and F. Otto, String-Rewriting Systems, Springer, Berlin, 1993.
Matteo Cavaliere, Pierluigi Frisco, and Hendrik Jan Hoogeboom,
‘Computing by only observing’, in Developments in Language Theory,
eds., Oscar H. Ibarra and Zhe Dang, volume 4036 of Lecture Notes in
Computer Science, pp. 304-314. Springer, (2006).

Matteo Cavaliere and Peter Leupold, ‘Evolution and observation: A
new way to look at membrane systems’, in Workshop on Mem-
brane Computing, eds., Carlos Martin-Vide, Giancarlo Mauri, Gheo-
rghe Paun, Grzegorz Rozenberg, and Arto Salomaa, volume 2933 of
Lecture Notes in Computer Science, pp. 70-87. Springer, (2003).
Matteo Cavaliere and Peter Leupold, ‘Evolution and observation — a
non-standard way to generate formal languages’, Theoretical Computer
Science, 321, 233-248, (2004).

Matteo Cavaliere and Peter Leupold, ‘Observation of string-rewriting
systems’, Fundamenta Informaticae, 74(4), 447462, (2006).

Jiirgen Dassow, Victor Mitrana, and Arto Salomaa, ‘Operations and lan-
guage generating devices suggested by the genome evolution’, Theoret-
ical Computer Science, 270(1-2), 701-738, (2002).

Alexander Krassovitskiy and Peter Leupold, ‘Computing by observ-
ing insertion’, in LATA, eds., Adrian Horia Dediu and Carlos Martin-
Vide, volume 7183 of Lecture Notes in Computer Science, pp. 377-388.
Springer, (2012).

Laura F. Landweber and Lila Kari, ‘Universal molecular computation
in ciliates’, in Evolution as Computation, eds., Laura F. Landweber
and Erik Winfree, Natural Computing Series, 257-274, Springer Berlin
Heidelberg, (2002).

Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa, DNA Com-
puting — New Computing Paradigms, Springer-Verlag, Berlin Heidel-
berg, 1998.

John R. Searle, The Rediscovery of the Mind, MIT Press, 1992.



