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Abstract:  Without a proper restriction on mappings, virtually any 
system  could  be  seen  as  implementing  any  computation.  That 
would  not  allow  characterization  of  systems  in  terms  of 
implemented  computations  and  is  not  compatible  with  a 
computationalist  philosophy of  mind.  Information-based criteria 
for  independence  of  substates  within  structured  states  are 
proposed as a solution. Objections to the use of requirements for 
transitions in counterfactual states are addressed, in part using the 
partial-brain  argument  as  a  general  counterargument  to  neural-
replacement arguments.1

1 INTRODUCTION

Intuitively,  knowing that a physical  system implements  a given 
computation tells us that the structure and dynamics of some part  
(or subsystem) of the system are similar ‘in some way’ to those 
that define the computation. To make this precise and meaningful, 
well-defined criteria must be used for such implementations. Each 
computation  that  a  system  implements  then  provides  a  partial 
characterization of the structure and dynamics of the system.

The primary application that requires that such characterization 
of  systems  must  in  principle  be  possible  is  computationalist 
philosophy  of  mind.  That  is  the  idea  that  there  are  some 
computations that, if implemented, give rise to mental states either 
inevitably or due to natural laws.

Defining the exact criteria for implementation has proven to be 
a  more  difficult  problem than it  might  at  first  appear,  because 
without  appropriate  restrictions  on  how  to  map  underlying 
systems  to  computations,  even  trivial  simple  systems  could  be 
seen as implementing virtually any computation. [1,2,3]

The  relationship  between  physical  systems  and  implemented 
computations is many-to-many: After all, many systems can have 
subsystems that are similar in some way, a given system can have 
many  subsystems,  and  a  given  subsystem  might  have  many 
aspects to its dynamics. The fact that a variety of physical systems 
would  be  able  to  implement  the  same  computation  is  called 
multiple realizability. Although different mappings are associated 
with  different  computations,  there  is  no  role  for  observers’ 
preferences  about  which  mapping  to  use  for  the  question  of 
whether or not a given computation is implemented by the system 
(since at least one successful mapping would be possible if it is), 
or when the whole spectrum of computations implemented by the 
system for all possible mappings is considered.

Along with the main proposal for implementation criteria, a few 
variant options will be suggested. Different options may be useful 
for different purposes, as different aspects of system structure and 
dynamics  may  be  more  important  for  each  purpose;  e.g. 
determining  to  what  information-processing  uses  an  analog 
machine  can  be  put  to  as  opposed  to  determining  whether  a  
computer  system  is  similar  enough  to  a  system  known  to  be 
conscious that it would have similar consciousness.
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An analogy for the use of such variant criteria is that a solid 
object has both a shape and a composition. One observer might 
say of the object “It is round”; while another observer might say 
“It  is  rubber”.  Despite  these  different  characterizations,  neither 
property depends on any external observer.

The main proposal is intended to be the one capable of being 
applied  to  philosophy  of  mind,  as  well  as  for  most  general 
purposes that may arise,  especially regarding digital  computers. 
However, it is possible that a detailed computationalist theory of 
the  human  mind  would  call  for  a  more  analog-focused 
implementation  criterion  to  appropriately  characterize  brain 
structure and dynamics.

2 NAÏVE CRITERIA FOR IMPLEMENTATION

The  following  criteria  for  implementation  will  be  used  as  a 
baseline  to  which  modifications  will  be  added  to  avoid  the 
problems  with  unrestricted  mappings  between  the  underlying 
system and the computation:

1) There must exist a mapping M between the states 
of  the  underlying  system  and  those  of  the 
computation  (known  as  formal  states).  A  given 
underlying state maps to at most one formal state, 
and need not map to any formal state.

2) If the underlying system is (or  were to be) in any 
state that maps to a state of the computation, then 
its  time  evolution  must  be  such  that  the  next 
different  state  of  the  computation  that  the 
underlying  system  state  will  be  (or  would be) 
mapped  to  (if  any)  is  given  by  the  appropriate 
transition rule of the computation.

The second criterion includes the requirement of proper behavior 
in counterfactual states, not just in actual states; this requirement 
was not always present in early ideas of implementation, and was 
part  of  Chalmers’  [1]  counter  to  Putnam’s  critique  of  the 
implementation  concept  [2].  This  requirement  leads  to  some 
counterintuitive implications that have been the basis for critiques 
of computationalism, as will be discussed below in sections 14-15.

Define a run of a computation as a pass through the sequence of 
formal  states  appropriate  to  the  initial  condition  while 
implementing  the  computation.  The  system  will  be  said  to 
implement  that  run.  To  characterize  what  a  system is  actually 
doing,  it  is  important  to  know  what  runs  it  implements;  for 
example, applied to computationalist views of mind, runs of the 
same computation that are associated with different sequences of 
states could give rise to different mental states.

A run need not be unending.  If a system goes to an underlying 
state that is not part of the mapping and does not resume entering 
formal states, the run ends. A run of a computation can also end 
by entering a formal end state.

The verb ‘run’ may also be used as a synonym for ‘implement’ 
when referring to a computation. A  computer is the part of the 
physical system that is mapped to the states of the computation.



3 SIMULATION PRINCIPLE

If the formal states for a computation are treated as though they 
were physical states and the transition rules for it as though they 
were  physical  laws,  then  one  computation  could  be  said  to 
implement another.

One would expect the following simulation principle to hold, as 
it  does  so  far  for  the  above  criteria:  If  a  physical  system 
implements  computation  #1,  and  computation  #1  implements 
computation  #2,  then the physical  system must  also implement 
computation  #2.  In  such  a  case,  computation  #2  is  called  a  
simulation, and computation #1 is called a  virtual machine. The 
simulation  principle should be interpreted as  a description of  a 
property  of  the  implementation  relation,  rather  than  as  an 
additional criterion, except when otherwise stated.

4 CLOCK-AND-DIAL FALSE IMPLEMENTATIONS

The traditional  view is  insufficient:  A clock (something  which 
reliably increments a non-repeating variable) and a stationary dial 
with sufficiently many states would implement any computation 
under the naïve criteria. The argument is summarized here; further 
details can be found in Chalmers’ paper [1]:

Map the initial state of the clock and the actual state of the dial 
into  the initial  formal  state,  and use  that  clock state  and other 
possible dial states to extend the mapping to counterfactual formal 
states.  For  each subsequent  clock state,  map the clock and the 
chosen dial states to the proper subsequent formal states. In this 
way, any desired transition rule can be reproduced.

To introduce notation that will be useful later, this mapping can 
be represented in symbols as (C, D)  F, where C is a clock state, 
D is the dial state, F is the formal state of the computation, and 
“”  means  “maps  to”.  The  dynamics  for  the  clock  can  be 
represented as C(t+1) = C(t) + k, where k > 0; here t refers to the 
time at the initial step, and t+1 is the time at the next step. Since 
the dial doesn’t change, D(t+1) = D(t), and F(t+1) relates to F(t) 
according to the desired transition rule.

5 THE COMBINATORIAL STATE AUTOMATON

Chalmers  [1]  correctly  noted  that  the  lack  of  structure  of 
computational states in the naïve criteria is what allows the clock 
and dial to implement any given computation; this illustrates that 
both  structure  and  function  are  relevant  to  characterizing  the 
nature of a system.

He proposed the Combinatorial  State Automaton (CSA) as a 
type  of  computation  that  would  resist  inappropriate  (invalid) 
mappings. It adds the following to the naïve criteria:

3) The formal state label is given as combination of 
substate values, specified in an ordered list.

This also has the advantage that ‘input’ is easily incorporated into 
the CSA concept by allowing some substates not to be covered by 
the  transition  rule,  but  rather  to  have  values  that  can  be 
determined by outside influences.

4) Each substate must be ‘independent’ of the others. 
Chalmers  took  this  to  mean  that  its  value  must 
depend on physical variables that are in a different 
region of space.

The  above  independence requirement  prevents  ‘clock  and dial’ 
mappings from implementing computations with substates.

6 PROBLEMS WITH SPATIAL INDEPENDENCE

However,  the CSA criteria do not rule out all  of the obviously 
false implementations [1,5,6], as pointed out by Chalmers himself. 
Consider a system in which the information that determines the 
values of all of the substates is copied at the next time step into 
each of  the spatial  regions.  To make  a  mapping  such that  this 
system would falsely be seen as implementing any computation 
(within the limits of the number of substates), just map the regions 
to the desired formal substates based on the transition rule.

This would require an exponentially growing memory capacity 
for  each  region,  so  it  is  not  practical  for  long  runs  or  big 
computations, and Chalmers left it at that as being sufficient until 
a proper fix is found. But the problem is far from insignificant: If 
not fixed, it is enough to trivialize the notion of implementation,  
and thus, invalidate computationalism.

In fact, it is not difficult to find examples of systems that would 
suffer from such false implementations. One such example is any 
system that performs a weighted sum of real numbers, such as a 
weighing scale does if more than one object can rest on the scale.  
Suppose there are N weights, each with twice the weight of the 
previous,  which can be placed on the scale,  each in a spatially 
distinct spot. The presence or absence of each weight then can be 
inferred from the total deflection of the scale. The position of the 
scale pointer can then be mapped to any desired one-bit function  
of  an  N-bit  string.  For  example,  a  prime-check  function  that 
equals 1 if the N-bit string represents a prime number in base 2 
notation, and 0 otherwise, could be used in the mapping. What’s 
more, there is no need for the absence of a weight to correspond to 
a 0 and its presence to a 1; this can be different for each bit. Thus, 
the empty scale would ‘compute’ that 000100012 (seventeen) is a 
prime  number.  This  is  a  computer  with  only two  distinct  time 
steps,  but  in  any  other  sense  it  is  a  nontrivial  computation.  
Clearly, this is a false implementation.

A  second  problem  with  the  use  of  spatial  separation  as  an 
independence criterion is that it is too closely tied to physics. It  
certainly would not be acceptable to use a physical property such 
as energy,  for example, as part of the fundamental definition of  
what a system computes. It is understandable that time may play a 
role  in  the  definition  because a  computation  is  an  initial-value 
problem, and one can generalize the role of physical time to the 
evolution parameter in any mathematical model of an initial-value 
system; it is far less obvious how the idea of spatial separation 
could be similarly generalized.

Also,  in  quantum  physics  (assuming  no  collapse  of  the 
wavefunction, or in other words, the many-worlds interpretation 
(MWI)),  macroscopic  objects  have  approximately  well-defined 
positions only relative to other objects. A system could then be in 
a  macroscopic  quantum  superposition  such  that  the  spatial 
positions of objects would overlap in the overall wavefunction. It 
is not plausible that this would destroy a computation since the 
internal structure and dynamics of the system would still be, in 
many  ways,  much  the  same  as  in  the  classical  case.  e.g.  A 
computer that finds prime numbers would still do so even if its 
wavefunction overall is a spatially spread-out function; measuring 
its position is not necessary. This argument holds even if the MWI 
is  not  true,  because  the  definition  of  implementation,  being  a 
mathematical notion, must not depend on empirical physics.



7 STRUCTURED STATES

Before  proposing  a  better  notion  of  independence,  another 
aspect of implementations of computations should be dealt with, 
and it will play a role in the criteria for valid mappings. While a 
CSA has structure in the form of the ordered list of substates, that  
may be a poor reflection of the structure of the underlying system, 
which could for example involve a function on a space of more 
than  one  dimension.  While  there  is  no  reason  that  every 
implementation of a computation must reflect the full underlying 
structure,  if  implementations  characterize  both  structure  and 
function,  it  would  make  sense  that  some  implementation 
mappings would reflect more structure than the simple ordered list 
of a CSA does.

Therefore, a computation will be specified by a structured set of 
variables  (called  substates),  and  a  transition  rule.  Such  a 
computation  will  be  called  a  Structured  State  System  (SSS). 
Substates must  be independent in a sense to be defined below. 
Unless  otherwise  noted,  all  of  the  other  naïve  implementation 
criteria still apply.

The structured state variables may form an ordered list, or may 
have additional structure; for example, they may be arranged into 
a rectangular matrix. Any label that the identity of a state depends 
on will  be  referred to as  an index;  for  example,  for  states  f(x)  
which are a function on the space x, then for each value of x there 
is a different substate f(x), and ‘x’ is an index label.

The  structured  state  framework  allows  for  both  analog  and 
digital computations, including computations with a continuum of 
variables  (a  field).  The  transition  rule  may  be  stated  as  a 
differential  equation  involving  time  derivatives  for  an  analog 
computation.

Substates may have no particular structural relationship to each 
other, in which case it will still be convenient to list them in an 
ordered list, but the lack of structure should be noted. It  is also 
possible  for  more  than one number  to  be  considered part  of  a 
single composite substate.

Input substates have values not determined by the past-to-future 
transition rule for the time step being considered, and are possibly 
influenced  by  forces  outside  the  scope  of  the  computation. 
Usually they are defined as being before the transition, but after 
the transition, some substates could also be inputs if their values 
are not fixed by the transition rule and by the values of substates 
before the transition, e.g. a button that can be pressed by outside 
forces at any time. Any substate which has a value determined by 
those of past substates can be called an output and often serves in 
turn as an input for future time steps.

Transition rules can apply at the substate level, not necessarily 
based on a global time step, so it need not matter if states on one 
side of a computer complete a localized transition before those on 
the  other  side  or  vice  versa.  Thus,  two  otherwise  identical 
spatially  distributed  computers  traveling  at  opposite  relativistic 
velocities could still implement the same computation.

In  the following  section,  for  convenience,  the term ‘physical  
system’  will  be  used  for  describing  the  underlying  system. 
However, it should be understood that one SSS may implement 
another, treating the formal states for the underlying computation 
in the same way as physical states are used in an implementation, 
and the transition rules for it as though they were physical laws.

A physical system is treated here as being itself an SSS, with a 
fixed state structure. For classical mechanics, the state structure 
could be the positions and velocities of the particles. For quantum 
mechanics it could be the wavefunction in the position basis, and 

for quantum field theory, the basis of field configurations that are 
functions  of  position.  The  criteria  for  implementation  of 
computations could also be applied to mathematical structures as 
the  underlying  system,  which  have  been  proposed  as  the 
underlying basis of reality, e.g. by Tegmark [4].

8 BASIC INDEPENDENCE

The false implementations cited in section 6 above must be ruled 
out. Since the problems arise when the mapping rather than the 
values of underlying physical variables does the work of binning 
the combinations of substate values into the desired function, the 
allowed mappings must be denied access to the resources to do so. 
This  suggests  requiring  limits  on  what  information  can  be 
obtained  from  knowledge  of  the  underlying  variables  that  are 
mapped to a substate; that is the basis of the proposal given here, 
which is as follows:

BI #1)   The first  rule  for  basic independence is thus that  it  
must  not  be  possible  to  determine  the  values  of  any  of  those 
substates  (at  the  previous  time  step)  that  determined  what  the 
value  of  a  given  substate  is  at  the  current  time  step  from 
knowledge of the physical states that are mapped to the formal  
value of the current substate and from knowledge of the system 
dynamics,  except  when the current  formal  value itself  provides 
enough information.

BI #2)   In addition, the values of other substates at the same 
time step should not be revealed by knowledge of the physical  
variables that are mapped to a given substate. This provides the 
second rule for basic independence.

If the second rule were not required, then false implementations 
could be obtained in systems where a function of one physical  
variable is calculated, if the invalid mapping claims it is a function 
of  many formal  substates.  For  example,  if  variable  A takes  on 
integer values in the range (0,…,2N-1), it can be mapped to N bits, 
B1,…,BN.  There  are  many  such  mappings.  Let  C  be  another 
variable and C(t+1)=f(A(t)), where t indicates one time step and 
t+1 the next. This might then falsely implement C(t+1)=g(B1(t),
…,BN(t)),  where  for  example  g  could  be  a  prime-checking 
function for base 2 numbers, where the mapping from A to the 
bits is chosen to make the values of g correspond to that function. 
To summarize, this example invalid mapping is:

      One variable  Many variables
    A(t)  [B1(t),…,BN(t)]

 C(t+1) = f(A(t))  g(B1(t),…,BN(t))
   Simple function of one #  Complex function of many bits

This second rule for basic independence is a generalization of 
Chalmers’  spatial  independence  criterion.  It  almost  reduces  to 
spatial independence in a case where physical variables depend on 
different spatial regions and do not contain the information needed 
to reveal the values of the substates in the other regions, except 
that  it  could allow one physical  variable  to  partially determine 
many substates. Spatial non-overlap can be a useful rule of thumb.

The two rules for basic independence eliminate clock-and-dial 
mappings,  because the clock and dial  physical  state which  any 
substate depends on would reveal all formal values of the previous 
and  current  substates.  They  also  rule  out  the  other  false 
implementations  discussed  above,  such  as  the  binary  prime 
number  checker  discussed  in  section  5,  in  which  the  variables 
mapped to each substate record information that would reveal the 
values of the previous substates that determine its values. Yet they 
are too conservative in some ways, as will be seen below.



9 INHERITANCE

It is sensible to allow certain cases in which formal substates share 
all of the physical variables that they depend on (contrary to the 
second rule for  basic independence) when those variables  carry 
indices that mark them as functions on a grid or space of more 
than one dimension:  Mappings should be allowed to reflect the 
multi-dimensional aspects of the structure and function.

For  example,  consider  a  hypothetical  underlying  physical 
system that is a set of bits labeled by a pair of integers plus time, 
B(i,j,t).  Suppose that only one bit  has the value 1 at  any given 
time; the rest are 0. The mapping is from these bits to a pair of 
integers I(t),J(t) in which I=i and J=j for the nonzero bit.

The second rule for  basic independence implies  that  I  and J  
would not be independent substates, because they both depend on 
the same set of physical variables – all of the bits on the grid. (The 
first rule may be violated as well but this depends on the transition 
rule.) But,  intuitively,  they should be considered independent; i 
and  j  are  distinct  aspects  of  the  underlying  structure  of  this  
system, not something imposed by the mapping. 

To take this type of structure into account, treating labels on a 
space (here, the grid) almost on equal footing with the values of 
physical  variables,  which  labels  the  value  of  a  formal  substate 
depends on must be taken into account. It is useful to define new 
technical terms, ‘inherit’ and ‘disinherit’, to deal with this issue.

If a label is inherited by a computation substate, then the formal 
value of the substate depends on how the physical state values are 
distributed  among  physical  states  with  different  values  of  that 
label. If there is no such dependence, then the label is disinherited 
by that substate;  swapping or permuting the values  of physical  
variables  whose labels differ  in only disinherited indices would 
leave that substate’s value unchanged.

For  substate  independence  purposes,  knowledge  provided  by 
the  values  of  disinherited  labels  for  a  given  substate  is  to  be 
disregarded  when  evaluating  whether  values  of  other  substates 
could be revealed by knowledge of the physical variables that are 
mapped to the given substate.

In the example of the grid of bits (Fig.1), with a mapping to I(t) 
and J(t) as described above, the value of I(t) depends only on the 
i-label, and not on the j-label. Swapping the j-value rows would  
have  no  effect  on  the  value  of  I(t).  Thus,  I(t)  inherits  i  and 
disinherits j. Similarly, J(t) inherits j and disinherits i. In this way,  
I(t) and J(t) are independent, just as if I(t) had depended on one 
physical  variable and J(t)  had depended on a different  variable, 
even though in reality they depend on the same set of bits.

There may be variables that both substates inherit. In addition, 
an index can be suppressed if  other indices suffice  to calculate 
substate values. Suppose that the physical system consists of bits 
on a 3-d grid plus time, B(i,j,k,t), and the mapping is such that  
each pair (i,j) is paired with a unique value of k, namely k ij, for 
each of the bits that are included in the mapping. As before, only 
one bit at a time among those used in the mapping is nonzero. As 
before, let I(t)=i and J(t)=j for the nonzero bit. I(t) inherits i and 
k.. Knowing k, since it is unique, reveals the value of j. But one 
could still calculate I(t) and J(t) if the k-values were not used. In 
this case, I and J should still be considered independent (barring 
the special cases); I inherits i and disinherits j, and J inherits j and 
disinherits i, with k suppressed.

Functions of labels can themselves be labels that the physical  
variables are in turn functionals of, as are fields in quantum field 
theory.  Inheritance  or  disinheritance  can  be  established  by 
considering permutations of either type of label.

10 CLASSICAL COMPUTERS IN QUANTUM WORLDS

Classical computation performed by quantum systems is a very 
important  subject  because  all  known  systems  are  actually 
quantum, and it should be studied in depth with full awareness of 
constraints on implementation mappings. Inheritance could allow 
quantum  systems  to  implement  some  computations  that  the 
classical version of a quantum system would perform, using for 
example the relative state (many-worlds) interpretation. In such a 
case, particle positions for a given relative state might be mapped 
to formal  substates, each inheriting the label for position of the 
appropriate  particle  and  not  the  others.  (Quantum field  theory, 
which is a more realistic model of reality, could be handled in an 
analogous way with inheritance of field values at key positions.) 

For example,  relative to an environment  state B representing 
one of the decoherent branches, a (simplistic) mapping might be:

X1(t) = C(B) ∫ dx1 dx2  |Ψ(x1,x2,B,t)|2 x1

X2(t) = C(B) ∫ dx1 dx2  |Ψ(x1,x2,B,t)|2 x2

with transition rules such as
d2X1/dt2 = k (X2-X1),  d2X2/dt2 = k (X1-X2)

X1 inherits x1 but not x2, and X2 inherits x2 but not x1; they can 
thus  be  independent  although  both  depend on  the  same set  of 
wavefunction physical variables.

Of  course  reality  is  not  so  simple,  as  decoherence  is  never 
complete,  so a more realistic mapping would specify a specific 
value  or  range  (which  can  vary  with  time)  for  each  of  those 
variables  that  determine  which  branch  of  the  wavefunction  is 
being considered. B could depend implicitly on x1 and x2 via the 
dynamics (not explicitly via the mapping) and other restrictions 
might also be needed (such as restricting the wavefunction to have 
a  given  form).   The  analog  formal  states  given  above  would 
typically  have  to  be  binned  into  digital  states  to  give  exactly  
reliable  transitions,  and  (as  usual)  such  a  run  need  not  go  on 
forever.  It  should  be  remembered  that  these  mappings  are  not 
necessarily the only ones that might be important for considering 
classical computations performed by quantum systems.

11 THE SIMULATION PRINCIPLE AND LABELING

For  the  simulation  principle  that  “If  a  physical  system 
implements  computation  #1,  and  computation  #1  implements 
computation  #2,  then the physical  system must  also implement 
computation #2” to hold, the formal substates of the computation 
should only be labeled with  indices  if  each such index derives  
from indices (of the underlying system) inherited by the substates.

For example, suppose the physical system consists of a set of 
bits on a 1-d grid plus time, B(n,t). A mapping is proposed from 
this system to formal substates consisting of a set of bits on a 2-d 
grid plus time, F(i,j,t), where each individual formal bit depends 
on only one physical bit; the only difference is in the labeling of  
the bits. There is no problem with the independence of the bits. 
However, there would be a problem if one tried to argue that the 
relabeled system implements  a  computation involving  substates 
I(t),J(t) where they each inherit from the corresponding label on 
the  2-d  grid.  That  is  not  a  legitimate  mapping  because  the 
proposed  substates  are  not  independent  when  considering  the 
labeling structure of the underlying system; both i and j depend on 
the value of the underlying system index n.

By contrast, suppose that the underlying system consists of a set 
of bits on a 4-d grid plus time, B(i,j,K,L,t). Map this to a set of 
substates on a 2-d grid plus time, F(i,j,t) where i and j are the same 



as before and each value of F depends on bits at various K-values 
and L-values, but only one value each of i and j. Suppose that F 
inherits  K but  disinherits  L,  treating L-values  symmetrically.  F 
now inherits i,j,K , but if it depends on all K values there is no 
point  in  labeling  it  with  a  K-dependent  index.  F(i,j,t)  is  a 
legitimate set of substates. For a specific example:

F(i,j,t) = ∑L ∑K K ∙ B(i,j,K,L,t)
The formal system described these substates might then simulate 
another computation involving a grid of bits with i,j labels.

Because  many  systems  (at  least  when  considered  on  an 
intermediate level, as virtual machines) don’t have much intrinsic 
label  structure,  such  as  a  group  of  transistors  which  can  be 
assembled together in largely arbitrary ways, it is often convenient 
to be able to label similar components without implying that the 
label can play a role in determining substate independence. Such 
labels of convenience will be flagged using a # sign.

12 TRANSFERENCE

The restriction on formal state labeling given above may be too 
strong.  With it,  the set  of allowed labels can contract by going 
from an underlying system to an implemented computation, but 
could  not  expand.  For  example,  with  it  a  Turing  machine 
consisting of a single long tape S(n,t) and the position N(t) and 
state H(t) of an active head could not be legitimately mapped to a 
set of bits on a 2-d grid plus time.

These kinds of mappings are not like those generally thought to 
be relevant to human cognition, which map physical variables to 
neural nets, but might  be relevant to artificial  intelligence or to 
attempts  to  model  a  possible  structure  underlying  (and 
implementing) known physics. Such mappings should be allowed 
if doing so would permit a better characterization of the structure  
and  dynamics  of  the  underlying  system,  since  such  a 
characterization is what the implementation concept provides.

One way to allow such mappings is allow some of the structure 
provided  by  the  transition  rules  for  an  already  legitimate 
computation  (which  is  structure  actually  present  within  the 
system) to be ‘transferred’ to the substate labeling for a mapping 
which  can  then be used to  implement  another  computation.  In 
allowing cases like this, it must be verified that trivial systems can 
not be considered to perform nontrivial computations.

The simulation principle as stated above will not automatically 
hold  in  such  cases.  To  preserve  it,  it  should  be  turned  into  a 
prescriptive rather than descriptive statement; this is an additional 
relaxation of the independence criteria.

As an example of ‘transference’, suppose two of the underlying 
system substates, X(1,t) and X(2,t), control which among the other 
substates are used or updated by a subsystem; the transition rule is 

X(3 + X(1,t) + C X(2,t), t+1) = [some function]
where   0  ≤  X1 <  C  and  0  ≤  X2 <  (N-2)/C,  and  so  for  every 
combination of  X(1,t) and X(2,t)) a different variable among the 
X’s within the appropriate range would be updated at this time 
step.  X(1,t)  and  X(2,t)  would  have  their  own  transition  rules. 
(Such  situations  are  common  in  artificial  programs  written  for 
electronic  digital  computers,  such as  to  display an  image  on  a 
rectangular  screen.)  This  suggests  a  sort  of  two-dimensional 
structure among the X’s within that range. This 2-d structure can 
be allowed to ‘transfer’ to the label structure in a mapping: 

X(3 + X1 + C X2, t+1)  Y(X1,X2, t+1)
Another example in which the transition rules might be used to 

guide allowed label structure is for a cellular automaton (CA). In a 

CA, each substate’s  transition rule  within  a  subset  of  substates 
depends on only a limited number of other such substates in a 
largely symmetric  way.  For example,  suppose the substates are 
bits  B(x#,y#,t).  The  bits  are  implemented  by  some  other 
underlying physical mechanism, and are not intrinsically on a 2-d 
grid from any inherited physical index, so the # notation is used 
here for the labels of convenience. They are hooked up in such a 
way as to  implement  a cellular  automaton,  in  which  each bit’s 
future state depends on its current state and on those of its nearest 
neighbors  in  the  x#  and  y#  labeling  scheme.  The  resulting 
physical  system  may look  messy,  with  wires  going  in  various 
directions  and  looping  around  each  other,  and  the  transistors 
physically arranged in no particular order, but it implements the 
transition rules and each bit is independent of the others as defined 
above. The logical structure imposed by the transition rules can be 
allowed to ‘transfer’ to the label structure; thus, the # signs may 
be dropped and this can be considered as bits on a 2-d grid.

Transference  could  occur  with  continuous  variables  as  well. 
The path length position of a bead along a wire might transfer to a 
continuous variable, since it implements constrained dynamics.

13 GENERALIZATION AND VARIANT CRITERIA

A  time-less  generalization  of  the  implementation  concept  is 
possible.  This  might  be  necessary  for  use  with  the  “frozen 
formalism”  that  quantum  gravity  might  have  if  the  Wheeler-
DeWitt  equation is true.  Transition rules would  be replaced by 
implication  rules:  the  laws  of  physics  must  imply  that  if  the 
“input”  substates  have  particular  values,  then  the  “output” 
substates  have  values  that  correspond to  the  rules.  A chain  of 
implications can then be constructed by taking those “outputs” as 
“inputs” for the next step (now a logical step rather than a time 
step), forming an extended computation. It must still be the case 
that there are many possible physical  states consistent with the 
laws of physics, so that counterfactual implications would be true.

Another issue related to implementation is that the criteria for 
independence put few restrictions on what function can be used in 
a  mapping  from  a  single  continuous  physical  variable  to  a 
continuous formal value; e.g. any 1-to-1 function is allowed. Such 
aspects of the system dynamics as finding the cube of a value are 
not well reflected by allowing any 1-to-1 mapping.

An example of an analog mechanism that could be used to find 
the cube of a number is a cone that can be filled with water up to a 
height corresponding to the desired number. (For this conceptual 
example, assume that water is a continuous fluid.) The water in  
the  cone  can  then  be  poured  into  a  graduated  cylinder.  If  the 
diameter  of the cylinder  is appropriate,  the height  of the water  
column in the cylinder will equal the desired cube. If the diameter 
were different, then scaling the height of the water column by an 
appropriate factor would give the desired cube.

A linear mapping for a continuous variable to a formal value, 
even  if  within  a  limited  range,  would be  meaningful  as  a 
characterization of the system dynamics, as in the above example. 
This restriction can be imposed, although this is not necessary for 
computation in the classic sense, which is more concerned with 
combinatorial properties. An otherwise valid mapping for a multi-
dimensional set of differential equations would still be nontrivial 
without the linear restriction.

A similar issue arises for mappings to digital formal values. For 
example, Joslin [7] believes that only a system that has something 
oscillatory  about  it  implements  a  1-bit  oscillator,  while  a 



monotonically increasing clock would not. One option to produce 
that  result  would  be  to  restrict  mappings  to  time-symmetric 
monotonic functions of the variables.

Without that restriction a monotonically increasing clock would 
indeed  implement  a  1-bit  oscillator.  Note,  however,  that  the 
formal value of that oscillator can only serve as input to a non-
trivial computational time step (such as putting it into a NAND 
gate with another substate) if there is indeed something oscillatory 
about the dynamics of the system, given the mapping restrictions. 
Therefore  there  is  no  harm  in  not  using  such  restrictions  for  
complex  systems.  Also,  in  general  a  time-symmetric  mapping 
may not be possible (e.g. if the hardware changes over time).

A somewhat different modification to the independence criteria 
is suggested by considering a pointer whose position has a slight  
‘fine structure’ dependence on variables that basic independence 
would  forbid,  but where  that dependence is  not  exploited by a 
convoluted mapping. Such a pointer does not discard information 
that is normally discarded by the digital substate, but there still is  
much about the dynamics that is reflected by the computation. To 
allow this type of system to implement the digital computation, 
bin the values of the underlying system variable (in this case, the 
pointer  position)  into  non-overlapping  ranges such  that  within 
each range it is mapped to the same formal state value. If  each 
range is then treated as a single value of the underlying variable, 
less information would be available from knowing those values 
than is available from the actual value of the pointer position. Use 
only  this  reduced  information  when  testing  for  independence. 
Because the ranges are non-overlapping, this could not be used for 
clock-and-dial-style arbitrary mappings.

14 COUNTERFACTUAL STATES AND CAUSALITY

In addition to the problem of false implementations of virtually 
any computation by trivial systems, a related line of attack against 
computationalism argues  that  counterfactual  transitions  -  which 
would have happened under different  initial conditions - cannot 
affect  consciousness  [8,9,10].  Requiring  that  counterfactual 
transitions would have occurred is a crucial ingredient in rejecting 
false  implementations  because,  for  example,  without  that 
requirement  any set  of  inert  bits  can be mapped to  the  output 
string of a proposed Boolean computation.

If this attack succeeds it therefore rules out computationalism. 
One exception has been proposed to that statement, which is that 
Platonically existing computations as an underlying reality could 
still  give  rise  to  consciousness,  producing  what  we  consider 
physics as an emergent property of typical conscious experiences 
[11].  However,  pseudo-computations  without  the  proper 
counterfactual  behavior  should  then  also  exist  Platonically,  so 
even Platonic computationalism would be vulnerable.

Several arguments against the use of counterfactual transition 
requirements  have  been  made,  but  they  fall  into  a  few  basic 
categories. In the first category, the argument relies on incredulity 
that the detailed properties of a potentially very complicated or 
‘Rube Goldberg’ subsystem can matter for consciousness if it is 
never  even  activated  during  the  computation.  For  example, 
Maudlin  [9]  gives  an  example  of  a  computer  that  operates 
straightforwardly  for  one  input  condition,  which  is  in  fact  the 
actual one, but is required to call on different (and in the actual  
case, inert) machinery for any other input.

There is of course no empirical way to verify that any system 
other  than  one’s  own  brain  is  conscious.  In  the  face  of  this 

criticism  based  on  one  intuition,  therefore,  a  computationalist 
responds  by  appealing  to  the  contrary  intuition  that  if-then 
relationships and feedback loops, the sorts of things captured by 
the  notion  of  computation,  seem  to  be  things  that  would  be 
important for consciousness, and must accept that these aspects of 
the overall structure and function of physical systems can indeed 
depend on complicated “inactive” components.

For  weighing  these  contrary  intuitions  about  “inactive” 
components,  it  is  worth  pointing  out  that  so-called  “inactive” 
physical components still have function in that they still evolve in 
time according to dynamical equations of physics; e.g. net force = 
mass ·  acceleration still applies even when the forces  cancel to 
zero.  This  gives  the components  “if-then” functional  properties 
and is very different from a situation in which the components  
only sit there and have no interesting functional properties.

In some cases, inactive components can be excluded from the 
mapping being considered, and what would have been their output 
is then treated as an input to the computation. This results in a 
different computation than the one that would have included all of  
the components, but it can be closely related to that one – perhaps 
close enough that for a particular initial condition, if one would be 
conscious, the other would have the same consciousness.

Consider  a  computer  with  a  ‘straightjacket’  such  that  if  it 
departs from a pre-specified sequence, the state will be changed 
by  an  external  monitor  to  match  the  sequence.  If  it  always 
matches the sequence, the monitor will make no changes (and will 
leave  the  subsystem  of  interest  physically  untouched).  In  the 
actual run, the monitor makes no changes. This system seems to 
have the wrong counterfactual relationships because of what the 
monitor would have done for counterfactual states, yet part of it is 
physically identical to a perfectly normal computer implementing 
that particular run without any external interference in actual fact,  
so it seemingly should implement that computation after all!

This is a case where the external monitor should be excluded 
from the mapping and its actions treated as a fixed sequence of 
inputs,  where  the sequence of  inputs  happens to  be such as  to 
leave the sequence of other substates the same as they would have 
been with no input. This computation is presumably conscious if 
the one without input would have been. Also, the mapping can be 
restricted to situations in which the input substates must have that  
fixed sequence, which in effect removes them as inputs.

A ‘derail-able computation’ in which the computation proceeds 
normally  for  some  combinations  of  input  substate  values,  but 
enters a ‘halt’ state and no longer undergoes nontrivial transitions 
for other possible input values, is another good candidate to be 
considered  ‘closely  related’  to  a  nontrivial  computation  which 
evaluates some function for all possible input values. The ‘halt’ 
value can be treated as one value of another substate, and in that 
case should be independent  of  the others.  For  example,  a  fuse  
might blow if an electrical computer is in a certain set of states.

Care  must  be  taken,  however,  not  to  consider  trivial 
computations  to  be  ‘closely  related’  to  complex  ones.  For 
example, suppose there is a string of ‘input’ bits S recorded on 
one  set  of  adjustable  switches,  and  a  string  of  ‘output’  bits  R 
recorded  on  another  set.  The  output  bits  initialize  to  a  default 
string R0 and remain that way if not adjusted. The default output 
string equals the base 2 value of some nontrivial function of the 
actual input string, S0. An implementation mapping can claimed to 
exist such that the output R(t+1) will  be the desired function of 
S(t) if S(t)=S0 OR if Bob comes by, looks at the strings, and sets 
the output to be the desired function of S. In  fact Bob will  not 
come by, but since S=S0, the computation is not only implemented 



but produces an output that does have the right value for the actual  
value of the input. This computation may at first  seem ‘closely 
related’ to one in which the proper function of the input is actually 
computed,  but  in  fact  it  is  a  trivial  computation  since any bits 
anywhere could be mapped to the output string R0, and cannot be 
‘closely  related’  to  the  nontrivial  computation  in  the  sense  of 
having the same consciousness if any.

15 NEURAL REPLACEMENT … OR ELIMINATION

Another type of argument against using counterfactual transition 
requirements  comes  down  to  a  neural  replacement  thought 
experiment, e.g. that of Bishop [8]. Similar thought experiments 
have  famously been used to argue  in favor  of computationalist  
views of the mind [12], so using this thought experiment against 
computationalism  is  an  interesting  move,  and  refuting  it  is 
important for the viability of computationalism.

In  a  neural  replacement  argument  (NRA)  scenario,  small 
components  of  a  brain  are  replaced one  at  a  time  by alternate 
components  that behave in  the same way as the old ones.  The 
following assumptions are made:
0) The functioning of the rest of the brain is preserved.
1) Any change this procedure might make to his consciousness is  
not something the person can explicitly take mental note of;  he 
could not directly notice that anything has occurred.
2)  Since  he  can’t  notice  any  change,  it  must  be  true  that  the 
properties of the person’s consciousness – namely the things he 
experiences, including color qualia - do not change or fade away.
3) Sudden vanishing of consciousness when a certain number of 
components have been replaced wouldn’t happen.

If these assumptions are granted, then a brain made of the new 
components must be equally as conscious as one made of the old 
ones. This is usually taken to imply that the behavior (which can 
be described in terms of computations) and not the composition of 
the components is what matters for consciousness.

The  twist  that  is  used  to  attack  counterfactual  transition 
requirements is to replace the old components - one at a time as 
before  -  with  new components  that  have  behavior  that  is  only 
correct for the particular initial conditions that actually occur. The 
new components produce a fixed series of outputs and have no if-
then sensitivity to counterfactual inputs. The argument is made as 
above that a brain made of the new components must be equally 
as  conscious  as  a  brain  made  of  the  old  ones;  but  if  so,  that 
establishes  that  counterfactual  sensitivity  does  not  matter  for 
consciousness. But for computationalism to work, counterfactual 
sensitivity must matter to filter out false implementations.

In  order  to  counter  this  argument,  a  computationalist  must 
reject  one or  more  of  the assumptions.  While  it  is  possible  to 
reject assumption 0), the view of the brain as similar to a neural 
net  classical  computer  (which  is  a  view  common  among 
computationalists) implies that assumption; the argument can then 
be run in terms of an artificial conscious digital neural net brain.

To reject assumption 1) would imply that the mind can make 
mental notes that are not aspects of the functioning of the brain. It 
would be a dualist position, suggesting an immaterial mind. While 
dualism can be compatible with computationalism, as Chalmers 
has  argued  [12],  such a  divergence  between the activity of the 
mind and that of the brain would not be.

Assumption  3),  while  not  prima  facie undeniable,  is  highly 
plausible because brains are highly variable. Rejecting it would be 
technically viable but would garner few if any supporters.

Assumption 2), that the properties of consciousness would not 
change, must be the one that computationalists reject, despite the 
fact that many computationalists have been ready to accept it in 
the context of the original NRA.

To shed light  on the issue,  consider  another  variation  of  the 
thought experiment. [13] In this case, when each small component 
is removed, it is not replaced by a substitute component. Instead, 
the exact same inputs that would have been fed to the remaining 
part  of  the  brain  by  the  missing  components  are  supplied 
externally,  as  boundary conditions.  For  simplicity,  assume  that 
these inputs are correct due to extreme luck. If the details of an  
artificial  brain’s  internal  functioning  are  predictable,  the inputs 
can be supplied by using those predictions.

Now only  part  of  the  brain  remains,  and  that  part  becomes 
smaller  as  more  components  are  removed  -  until  vanishing 
altogether. The activity in the partial brain is the same as it would 
have been if no components were removed, since the boundary 
conditions are the same for that part of the system.

In this case it is not possible for the consciousness of the brain 
to remain unaffected by the removal of the components, because 
the tiny bit of a brain remaining near the end of the process would 
not be complex enough to give rise to cognition. The remaining 
consciousness must be only a partial version of the original.

Assumptions 0), 1), and 3) are equally valid in this case as in  
the standard NRA. Assumption  2)  is  clearly false  in  this  case,  
because the subsystems of the brain responsible for the various 
types of experiences – such as color vision – will at some point 
simply  no  longer  exist.  But  this  means  that  the  mind  is not 
necessarily a good judge of what it is conscious of, since it can 
never at any point make a mental note of any changes.

To relate this partial brain argument (PBA) more closely to the 
NRA, consider replacing the removed components with mentally 
inert components – anything that can supply the right boundary 
conditions  to  the  remaining  normal  brain,  but  which  cannot 
support consciousness. For example,  in a hypothetical  model in 
which substance dualism were true, the mentally inert components 
would function the same in terms of input and output, but would 
lack the ‘magic’ substance needed for consciousness.

The remaining partial normal  brain would be identical to the 
partial  brain  in  the  PBA,  and  would  have  the  same  partial 
consciousness. Assumption 2) is just as clearly wrong in this case 
as  in  the  PBA.  But  this  case  is  no  different  than  that  of  the 
standard NRA, except that it has been stated from the beginning 
that the usual conclusion of the NRA that the consciousness is  
unchanged is false.  As this argument  shows,  that is a perfectly  
self-consistent  possibility,  thanks  to partial  consciousness.  As a 
result, any NRA fails to show what it was intended to show.

Apart from the PBA, there are other reasons to think that the 
mind is not a good judge of its own consciousness. For example,  
the central part of the human visual field is much more detailed 
than the peripheral parts, but humans rarely notice that fact. The 
idea that the mind would have to be able to notice any change in 
its own consciousness may be a sort  of homunculus fallacy,  in 
which the mind is thought of as an observer of its own thoughts. 

With the NRA no longer viable, computationalism loses one of 
the arguments in its favor. However, the idea that the mind is a 
good judge of its own consciousness must also be abandoned, and 
it  is  a  source  of  the  anti-computationalist  intuition  that  mental 
qualia are hard to relate to computation. The truth or falsity of  
computationalism is a complicated issue; what is being claimed 
here is merely that the need to rule out false implementations does 
not falsify computationalism.



16 AMOUNTS OF IMPLEMENTATIONS

If computationalism about consciousness is true, then in order to 
use  it  to  relate  a  mathematical  model  of  a  physical  system  to 
predictions about what observers who live in that system would 
observe, it is not enough to know which computations are being 
implemented or even to also know how to relate each computation 
to a particular conscious experience or lack thereof. The reason is 
that multiple instances or different amounts of each computation 
may  exist  [14,15].  In  the  system’s  spectrum  of  computations, 
different computations must be assigned different weights.

That  is  certainly  the  case  in  the  many-worlds  interpretation 
(MWI) of quantum mechanics,  for  example.  For the MWI, one 
must be able to put a measure on the computations in each branch 
of the wavefunction and relate it to the effective probabilities for  
observing different outcomes. In principle, if the proper way to do 
that were known, one could then either falsify the interpretation 
(while  suggesting what  modifications could fix the problem) or 
confirm that it does give the correct predictions.

The difficulty that arises is not only that the question cannot be 
investigated  experimentally  but  also that  there  are  few obvious 
restrictions  that  must  be  met,  since  the  implementations  being 
considered do all exist in the system. By contrast, in the case of  
defining implementation criteria, the need to avoid the possibility 
of false implementations at least provides a strict restriction that 
guides what criteria are acceptable.

That  said,  a  few  possibilities  will  be  mentioned  here.  One 
possibility is that the measure is proportional to the number of 
independent implementations, where independence is established 
in the same way as for substates within a single implementation. 
A more lenient possibly is that in this context implementations are 
independent as long as it  is  physically  possible to choose their  
initial  conditions  in  any  logically  possible  combination.  These 
possibilities may be consistent with a slightly modified MWI [14].

Since the measures are also a characterization of the structures 
and function within the overall system, it is also possible that parts 
of the system that are in some sense physically larger should have 
more measure. That could be consistent with the fact that branches 
of  the  wavefunction  with  larger  amplitude  in  the  MWI  have 
higher  effective  probabilities.  However,  that  solution  of  the 
problem, while it might be qualitatively plausible, assumes what it 
is meant to explain on the quantitative level (amplitude-squared 
for effective probabilities), so it lacks philosophical force unless 
independent confirmation could somehow be supplied.

17 CONCLUSIONS

Implementation  of  Structured  State  Systems  is  a  way  to 
characterize  the  structure  and  dynamics  of  physical  systems  in 
terms  of computations,  such as  is required for  computationalist 
philosophy of mind. Criteria based on information available in the 
physical subsystems that are mapped to substates suffice to rule 
out  false  implementations,  and  the  concepts  of  inheritance and 
transference  extend  the  usefulness  of  those  criteria  to  include 
various  valid  implementations  that  should  not  be  ruled  out. 
Options exist  for  better characterizing the systems for  different  
applications or for systems with laws but not dynamics.

The implementation criteria include requirements on transitions 
in counterfactual states. This has been a subject of controversy in 
regard to the application to philosophy of mind. The importance it 
gives to inactive machinery is counterintuitive to some people, but 

currently inactive components still follow the laws of dynamics 
and  this  endows  them  with  functional  capabilities,  which 
computationalists  do not  see as  counterintuitive.  Also,  in  some 
cases, ‘improper’ overall counterfactual behavior need not make 
any difference to consciousness in the computationalist view, as 
such systems can implement computations which can be closely 
related to the ‘proper’ one and which would give rise to the same 
type of consciousness.

The neural replacement argument, which traditionally has been 
used to argue in favor of computationalism, can be turned around 
to argue against it with the use of components with pre-specified  
activity. To counter this, the partial-brain argument was given as a  
general  counterargument  to  the  neural  replacement  argument. 
With only part  of  the brain in  existence,  it  becomes  clear  that 
consciousness  in  such  cases  must  become  more  partial  as  the 
process goes further, and the same partial consciousness can apply 
in  the  neural  replacement  scenario.  This  neutralizes  the  neural 
replacement argument in both its traditional pro-computationalist 
form and in its anti-computationalist form.

Given  that  a  system  does  implement  various  computations, 
some of which (assuming here the validity of computationalism) 
give rise to conscious observations, it is necessary to have a way 
to assign an effective probability to each observation in order to  
predict what observers who live in that system should expect. The 
way to do this remains an open question, which assumes particular 
importance  for  the  evaluation  of  interpretations  of  quantum 
mechanics, because the quantum wavefunction has a many-worlds 
character and the origin of effective probabilities in that context  
has not been adequately explained.
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