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Abstract. The question what makes natural systems “computa-
tional” is addressed by studying elementary cellular automata (ECA),
a simple connectionist model of “natural computation”. It is shown
that ECA which show complicated dynamical and computational be-
haviour have certain dynamical system characteristics. In particular,
it is argued that ECA capable of computational universality are sen-
sitive but not chaotic and thus, in this sense, at the “edge of chaos”.
Based on the ECA case, the general features natural systems should
display in order to be called “computational” are then identified: It
is argued that “computation” in nature should show simulation, hier-
archy and universality features, where the latter can be characterized
to some degree by dynamical system properties.

1 INTRODUCTION
In what sense does nature “compute”? Conventional computers are
physical systems that basically implement a universal Turing ma-
chine, the standard model of computation. Accordingly, these phys-
ical systems, special kinds of natural systems, may be called “com-
putational”. When presented with natural systems that have not been
explicitly designed for computational purposes it becomes harder to
judge whether there are “computational” in some sense. Especially
in neuroscience, and more generally in biology, systems are often
described in computational terms. However, as soon as we leave the
firm basis of standard computation theory, we are left in the dark
whether we are dealing here only with some vague, descriptive ideas
or with “natural computation” in some more precise sense. Clarifying
this issue leads to major conceptual and philosophical problems.

Part of the problem is that “natural computation” seems to be
observer-relative. Without an observer, there is no computational
task, hence no computation. However, the “observer” should not
have the power to make any physical or biological process “compu-
tational” simply by observing it. What we are looking for is a notion
of “natural computation” which is neither too wide nor too narrow,
for in both cases the notion would become vacuous. This implies
that both the notion of “observer” and of the “computational” system
should satisfy certain constraints. I propose to approach this question
by studying concrete models of computation. Without a model, we
cannot precisely ask nor answer what makes a natural system “com-
putational”. Of course, assuming a model of a “real”, natural system
is prone to oversimplification, nevertheless, we may argue that cer-
tain models capture the relevant aspects we set out to investigate at
least to some degree.

Now, we seldom encounter natural systems thought to have “com-
putational” capacities that are readily describable by the Turing ma-
chine model of computation. It is therefore natural to look for other
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models of computation that are closer to the kind of systems in nature
that are thought to be “computational” in some sense. An important
class of such alternative models are the so-called “connectionist mod-
els”. Connectionist models are basically networks of simple process-
ing units which bring out complex computational processes by the
interaction of a large number of units. Especially in neuroscience it
is believed that these models may provide an account of the complex,
emergent nature of “computation” in natural systems.

A simple, paradigmatic example of a connectionist model of com-
putation are cellular automata. Cellular automata consist of networks
of simple processing units, called cells, which by interaction among
the units can produce complicated behaviour. Cellular automata have
several features which make them good models of computational
systems in nature, especially biological systems: such networks of
cells can be identified in many natural systems, the cells follow sim-
ple rules that can be easily postulated for many interactions between
cells, the memory of the system is not stored in a specific place but
rather consists in the overall or partly configuration of the system and
the processing is not by a single processor but rather in parallel by
all or parts of the cells of the system. If biological systems do a kind
of “natural computation”, it is thus likely that at least certain rele-
vant aspects of this “computation” are describable in terms of simple
connectionist models such as cellular automata.

Cellular automata bring the further advantage that they can be
treated both in terms of the standard theory of computation and dy-
namical system theory. For example, it can be shown that certain
cellular automata are computationally equivalent to universal Turing
machines. Whatever is computable by a universal Turing machine is
thus computable by these cellular automata. At the same time, cel-
lular automata are dynamical systems and precisely describable in
terms of symbolic dynamics, the discrete version of dynamical sys-
tem theory. This gives us the interesting perspective to combine and
compare the computational with the general dynamical system view-
point.

The general idea is then to describe natural systems by dynamical
system theory, the broadest theory possible that deals with the dy-
namics of systems and then single out, according to certain criteria
which will be gained through our study of cellular automata, the class
of dynamical systems that show computational behaviour. As we will
argue below, the system’s behaviour should in particular show some
form of computational universality, which in turn implies certain dy-
namical system properties and certain restrictions in regard to the
“observer” of the computation. We thus gain a general approach to
characterize “natural computation”.

The paper is organized in the following manner. We first intro-
duce a particular simple class of cellular automata, the elementary
cellular automata. Then we describe their computational capacities



and introduce some basic dynamical system notions which allow us
to describe and classify their behaviour in dynamical system theory
terms. We will then find that the class that shows interesting com-
putational features, i.e. actual or possible computational universality,
has certain dynamical system characteristics. It is then argued that
these features can be postulated as an indication of “computation”
for a wider class of dynamical systems. Finally, the philosophical
consequences are discussed in view of our account of “computation”
in nature.

2 CELLULAR AUTOMATA

Let us now introduce the elementary cellular automata and discuss
their computational and dynamical system properties.

2.1 Elementary Cellular Automata

An elementary cellular automaton (ECA) consists of
cells that are associated with the sites of a one-
dimensional lattice. For the mathematical treatment it is useful
to assume an infinite number of such cells, whereas for simulations
and applications the number of cells is obviously finite. With a finite
number of cells, boundary conditions have to be assumed, usually
periodic boundary conditions such as in Figure 1. In the case of
ECA, each cell can only be in either of two states, which are usually
denoted by 0 or 1. The dynamics of the ECA is generated by the
simultaneous interactions of the cells with their nearest neighbours,
according to a local transition rule (see Figure 1).

Figure 1: Schematic view of a finite elementary cellular automata with periodic
boundary conditions. Cells are updated in parallel by a local rule, indicated by the
arrows. Time runs from top to bottom.

The local transition rules of ECA are given in the form of a rule
table, such as

111 110 101 100 011 010 001 000
0 1 1 0 1 1 1 0

The upper line shows the 8 possible configurations in the neighbour-
hood of an ECA cell and the lower line shows the subsequent state or
value of the middle cell at the next time step, according to this spe-
cific ECA rule. It is the convention, due to Wolfram [31], that rules
are referred to by the decimal number which results when the lower
line, i.e. the output of the local rule, is read from left to right, in the
specific example above one thus speaks of “rule 110”. There are 256
such ECA rules, but due to symmetries in the rule tables (left-right
and 0-1 complements), there are only 88 independent ECA rules that
show different behaviour.

The whole array of cells forms a configuration. The temporal evo-
lution of ECA is then generated by the iterated and simultaneous ap-
plication of the local transition rule to the states of each cell, which
yields a map that acts on the configurations. The resulting orbit can
be visualised by so-called space-time patterns, as in Figure 2.2

(a) Rule 128 (W1) (b) Rule 108 (W2)

(c) Rule 110 (W4) (d) Rule 150 (W3)

Figure 2: Space-time patterns of four ECA rules for configurations with periodic
boundary conditions. Black dots code state 1, white dots state 0. The initial configura-
tions are chosen randomly. Time runs from top to bottom.

As we can see in Figure 2, ECA show a variety of dynamical be-
haviour. Of special interest are space-time patterns like the one pro-
duced by ECA rule 110 (Figure 2(c)) where localised structures arise
from a “random” background and start to interact with each other.
The complexity seen in such space-time patterns suggest that we
might deal here with a “computational” process. Let us thus discuss
now the computational capacities of ECA.

2.2 Universality in Elementary Cellular Automata
Elementary cellular automata (ECA) can easily be seen as compu-
tational devices: some input is given, via the initial configuration,
which is then processed, via the local transition rule, to an output,
given by some final configuration. How complex or universal can
this computational process be? Well, for certain CA rules and at least
one ECA rule it can be shown that they constitute computing de-
vices that are Turing-universal, i.e., computationally equivalent to a
universal Turing machine. Basically, a universal Turing machine is
a Turing machine (TM) that can simulate any other Turing machine.
Thus, anything computable by Turing machines is computable by
a universal Turing machine. Depending on one’s understanding of
the Church-Turing thesis, one may thus say that there is no computa-
tional process devisable that surpasses the possibility of the universal
Turing machine. Note also that universality is not only a crucial theo-
retical concept but also relevant in practise; in essence it is the reason
why it is possible to have all-purpose computers [7].

2 The graphics depicting space-time patterns have been generated with the
software Mathematica by Wolfram Research, Inc..



We will below argue in more detail that it is essential for any “com-
putational” process to show some form of universality. Let us here
first discuss universality in the case of CA. As mentioned, certain
CA can be shown to be Turing-universal. However, there are also
other forms of universality and there is no complete consensus on
how to define e.g. universality in the CA case. Let us thus briefly
look at some proposals regarding CA.3

The obvious approach is to simulate an arbitrary TM by a suit-
able designed CA. This has been done for many instances. For ex-
ample, Kari [14] exposes a construction which implements a TM in
one-dimensional CA. The input is encoded as a finite initial config-
uration and accepted if the CA reaches a configuration with some
cell in an accepting state, i.e. in the state which corresponds to the
accepting state of the TM. Under this definition, the CA is universal,
if the TM it encodes is universal. Many modifications of this con-
cept are possible.4 A common form of universality is the following:
a one-dimensional CA is universal if the decision problem whether
a given finite configuration evolves into the quiescent configuration,
that is, a configuration that does not change anymore, is recursively
enumerable complete (r.e. complete).5

The well-known two-dimensional CA “Game of life” has been
proven universal in the above sense [4, 11, 14]. Further, the ele-
mentary cellular automata rule 110 has been proven by Cook [5]
to be universal in the following sense: For given, non-empty words
u, v, w, x ∈ {0, 1}, i.e. for some finite strings of 0’s and 1’s, it is r.e.
complete to decide whether the configuration ...uuwvv... evolves
into a configuration that contains the word x. Because it is assumed
that there are, to the left and right of the word w, infinitely often re-
peated words u and v, thus periodic sequences, the system is also
called “weakly universal”. At the moment, rule 110 is the only ECA
rule known to be universal, though other rules, e.g. rule 54, are sus-
pected to be universal in this sense [34].

There are however also other forms of universality devisable. For
example, Delvenne et al. [9, 8] argue for the following generalised
definition: A computing machine is pictured as a dynamical system
together with an “observer” of that system. It is assumed that the ob-
server is modeled by a finite state machine and that the state of the
dynamical system is not exactly known. Thus, what is observed, is
a set-to-set mapping effectuated by the dynamical system. The com-
puting machine is then said to be universal, if some property about
these sets is r.e. complete.6 According to Delvenne et al., this con-
cept of universality is to be preferred over a notion of universality re-
lying on point-to-point properties, i.e. configuration-to-configuration
properties such as the ones used in the above definitions of universal-
ity, because it avoids certain unnatural cases of universality apparent
in these cases and the, in practice, unavailable infinite precision as-
sumed therein.

A further, perhaps more natural form of universality in the CA case
is intrinsic universality.7 A CA is intrinsically universal, if its space-
time dynamics comprises the space-time dynamics of any other CA,
if it is rescaled accordingly, that is, after some grouping and shifting
of cells and running the CA possibly several steps the same space-

3 See Ollinger [20] for a survey on universality and CA.
4 See Kari [14].
5 This definition of universality follows the definition of universality for Tur-

ing machines given by Davis [6]: A machine is universal if and only if
its halting problem is recursively enumerable complete. A recursively enu-
merable problem is complete if every recursively enumerable problem is
reducible to it. In particular, the halting problem of an universal Turing ma-
chine is recursively enumerable complete.

6 Delvenne et al. [9]. There, also a more precise definition is given.
7 This notion of universality was made strong by Ollinger [21, 20].

time patterns are generated.8 Intrinsic universality is a different no-
tion of universality than universality in the Turing machine sense:
there exist Turing-universal CA that are not intrinsically universal
[20]. In fact, it is not known whether the (weakly) Turing-universal
ECA rule 110 is also intrinsically universal.

2.3 The Edge of Chaos
Any computational process must be sustained by some underlying
dynamical process. Does the computational universality discussed
above then necessitate some specific dynamical behaviour? Various
authors, most prominently Langton [17], advanced the general thesis
that computational capabilities can spontaneously emerge in nature
in the vicinity of a phase transition, called the “edge of chaos”, i.e., at
some critical point between highly ordered and highly disordered be-
haviour. Such critical behaviour may also be self-induced by tuning
the appropriate parameters, in this case one speaks of self-organised
criticality [2]. Both concepts can be illustrated with cellular automata
(CA).

However, although the “edge of chaos” thesis is intuitively
appealing, it is too vague a notion if not made more precise. In
the case of CA, this means to give a formal classification of the
dynamical behavior of CA that allows to pin down where exactly
the “edge of chaos” is to be found. A first classification of the
dynamical behaviour of CA based on an analysis of CA simulations
and some statistical measures was proposed by Wolfram in the
1980s [31, 32, 33]. According to this classification, CA behaviour
falls into the following classes:

(W1) almost all initial configurations lead to a fixed point
configuration,

(W2) almost all initial configurations lead to a periodic
configuration,

(W3) almost all initial configurations lead to random looking
behaviour,

(W4) localized structures with complex behaviour emerge.
This classes are illustrated in Figure 2.

A mathematically more precise classification than Wolfram’s clas-
sification can be achieved by using the theory of topological dynam-
ics or symbolic dynamics, i.e., the discrete version of dynamical sys-
tem theory. In the case of ECA, we were able to give a complete
classification of all ECA rules in terms of topological dynamics no-
tions [26]. Let us briefly explain how this works.

The classification uses well-known concepts and notions of dy-
namical system theory, which we will explain here in non-technical
terms. For precise definitions, see [16, 14, 26]. Usually, dynamical
systems are studied on metric spaces, where a metric defines a no-
tion of distance. In the case of CA, the so-called Cantor topology
is usually assumed, which can be induced by the Cantor metric dC ,
defined by

dC(x, y) =

+∞∑
i=−∞

δ(xi, yi)

2|i|
(1)

where the discrete metric δ(xi, yi) is defined as

δ(xi, yi) =

{
1 xi 6= yi

0 xi = yi.
(2)

Here, xi and yi mean the values of some cell i of two ECA configu-
rations x and y. In the Cantor metric, two configurations are close if
they agree with each other within a region around the origin.
8 For more precise definitions see Ollinger and references therein [21].



With this notion of “distance”, we can then introduce notions of
dynamical system theory, such as sensitivity, chaos, etc. First, we
need the concept of an almost equicontinuous and equicontinuous
CA. A CA is called almost equicontinuous, if there is at least one
configuration of the CA with an orbit such that the orbits of any other
configuration nearby will stay close to it. If this is the case for all con-
figurations, the CA is called equicontinous. Such CA can be reliably
simulated for any mistake in the simulation will not have a great ef-
fect on the overall temporal evolution of the CA. In contrast, for a
sensitive CA, there exists a constant ε, such that for a given configu-
ration there is a configuration close to it, such that the orbits starting
from these configurations will eventually separate by at least ε. Un-
less the initial state is precisely known, the long term behaviour of
a sensitive system can thus not be predicted by a simulation of the
system. An even stronger form of sensitivity is positive expansivity.
For positively expansive CA, the orbits starting at any two different
configurations will always eventually differ around the origin. In the
case of CA, positively expansive CA are automatically sensitive [16].

These notions can then be used to give a mathematical precise
classification of the dynamical behaviour of CA.9 It can be shown
that every one-dimensional CA falls exactly in one of the following
classes [15]:

(K1) equicontinuous CA,
(K2) almost equicontinuous but not equicontinuous CA,
(K3) sensitive but not positively expansive CA,
(K4) positively expansive CA.
With these notions, we can also give a precise definition of chaotic

behaviour, in the sense of Devaney [10]. As it turns out, for ECA,
chaos means that the ECA are sensitive and surjective. A CA is sur-
jective if every configuration has at least one pre-image, i.e., a pre-
ceding configuration. If there is no such pre-image, one speaks of a
Garden-of-Eden configuration. Thus, surjective CA are the CA with
no Garden-of-Eden configurations.

The full classification of ECA according to these notions is carried
out in [26] and visualized in Figure 3. In Figure 3, all 88 independent
ECA are classified according to their dynamical system properties.
In this classification, there is a further subclass of “eventually weakly
periodic” ECA. The idea of this class is to single out from the sen-
sitive ECA the ECA that eventually show a periodic, shifting pattern
and which are thus, in this sense, not “complex”.

In the light of this classification, we can localize more precisely
the “edge of chaos”, namely in the class of ECA that are sensitive
but not chaotic. This class corresponds well to what one would intu-
itively regard as “complex” given the space-time patterns of ECA. In
particular, the ECA rules of Wolfram’s class (W4) seem to fall into
this class. It would however be necessary to distinguish or exclude
further subclasses in this class, such as the sensitive but “eventually
weakly periodic” ECA, to understand more fully what makes an ECA
rule “complex” or to be at the “edge of chaos”.

3 UNIVERSALITY AND ITS DYNAMICAL
SYSTEM PROPERTIES

Any natural system which is believed to be “computational” is a dy-
namical system for the simple fact that any kind of “computation” is
carried out in time. However, we do not want to count any dynamical
system among the “computational” system because the term “com-
putation” would then become vacuous. For example, we suspect that
certain models of biological systems show computational capacities

9 The classification was introduced by Gilman [13] and modified by Kurka
[15].

Figure 3: Classification diagram for the elementary cellular automata (ECA).
The chaotic ECA are inside the double-framed box. Note that the class of
sensitive and eventually weakly periodic ECA is not complete.

whereas e.g. the dynamics of planetary motion does not. Our study
of elementary cellular automata (ECA), a paradigmatic class of con-
nectionist models with a variety of dynamical behaviour, showed that
the most “complex” rules display dynamics between regular or peri-
odic and chaotic behaviour. It is believed that this kind of complex
dynamics is needed to show “computation”. In particular, we take as
evidence for possibly dealing in this class with computational sys-
tems the fact that the Turing-universal rule 110 is in this class.

Why should computational universality, such as Turing-
universality, to be taken as evidence of a “computational” system?
First, we argue that a certain flexibility of the input-output behaviour
is needed to speak of computation. A mere function that maps one
value to another value is not of interest to computation. What is
wanted is a universal capacity to deal with different, in the best
case all posable problems. Second, and related to the first point,
demanding a form of universality excludes cases which we don’t
regard as kinds of computation, such as planetary motion. If we
argue for a weaker notion of computation, basically any dynamical
system, i.e. any physical system with temporal dynamics, is prone
to become “computational”. Third, this approach agrees well with
standard computation theory insofar as the Turing machine model is
a model of computation because it allows for a notion of universality.
As said, this is not just a theoretical issue, but also a practical one:
the possibility of the all-purpose computer is grounded in the
universal Turing machine model [7].10 Fourth, although universality
is a strong condition, it can come in different forms, as already seen
in the CA case, thereby possibly allowing to take into account the
behaviour of more “natural” systems than the constructed Turing
machine model.

Seeing universality as a sign of “computation” raises several is-
sues. First, as said, various notions of universality are devisable, as
we have already seen in the CA case. It therefore takes further re-
search to study the overlap and differences of different notions of uni-
versality. Second, it restricts somehow the role of an “observer” for
the following reasons: When proving universality for CA and similar
models it is important to realize that there is the actual, dynamical
process which is to be proven universal, but there is also the encod-
ing of the input instances to that process and the decoding or reading

10 As long as the memory of the computer is not exhausted, which is practi-
cally always the case, conventional computers can be seen as implementa-
tions of a universal Turing machine.



out of the output, once the process has halted in some sense. Typ-
ically, the input to the systems or models are coded in such a way
that they become reducible to models already known to be compu-
tationally universal. Now, the process of encoding and decoding can
also be seen as a computational process. Then, this process must be
of a simpler computational nature than the actual, dynamical process,
such as the evolution of a CA. If not, all the computational power lies
in the encoding and decoding process, whereas e.g. the CA dynam-
ics can become completely trivial. In particular, the encoding and
decoding process should not be universal itself. In the case where
universality in the Turing machine sense is to be proven, this means
that the model or automata describing the encoding and decoding
process must be lower in the standard automata hierarchy. In more
general terms it means that the computational capacities of the “ob-
server” should be weaker compared to the computation that is being
“observed”.

Finally, computational universality in the Turing-machine sense,
or some other sense, may only be possible if some conditions on
the dynamical behaviour of the underlying system are met. Part of
the problem to clarify this relation is that there is, as mentioned be-
fore, no unanimous accepted definition of computational universal-
ity for models such as CA. To different definitions of universality
there might thus correspond different dynamical system properties.
Despite this fact, we conjecture that, in the ECA case, sensitivity
and non-chaoticity are necessary conditions of universality. This may
also hold in the more general case, but further research is needed in
this direction. Let us briefly point out some issues. In contrast to our
findings in the ECA case, Wolfram conjectured that, for example,
ECA rule 73, which is not sensitive, may be computationally uni-
versal [34]. This difference is due to the fact that our results hold
generally for ECA, without any restrictions on the initial conditions,
whereas Wolfram considers specific sets of initial configurations on
which the rule acts. On such a restricted set of configurations, ECA
rule 73 might indeed be sensitive. Also, we do not allow for “fil-
ters”, such as mentioned by Mitchell et al. [19], that would filter
out the complex structures out of chaotic dynamics. Further, there
can also be some examples of chaotic systems constructed which
are universal.11 We think that for sufficient “natural” settings these
examples lose their relevance, but the issue needs further research.
Lastly, the problem of noise in natural systems must be addressed.
Noise may destroy the delicate conditions to carry out computations;
on the other hand, it may well be that certain systems are capable
to somehow shield off this noise. Also, it may be the case that cer-
tain notions of universality, such as the one proposed by Delvenne et
al. [9, 8], allow to take into account the fact that natural systems are
exposed to noise.

With these caveats, our findings in the ECA case are in accordance
with the “edge of chaos” thesis advanced by Langton [17] and oth-
ers: It is the systems with neither too simple nor chaotic dynamical
behaviour that are the computationally relevant systems for physics
and biology. It is particularly important to realize that it is not the
chaotic systems, as it is sometimes assumed, but the so-called inter-
mittent systems that are the most complex. Such intermittent systems
can also be characterised formally as having the largest complexity
in the sense that their behaviour is the hardest to predict [30]. Al-
ternatively, if computation is measured as a reduction of complexity
[29], the intermittent systems may then also be said to provide the
complexity needed for efficient computations. It is intuitively clear,
as pointed out by Langton [17] and others, why this kind of com-

11 See e.g. Delvenne et al. [9].

plexity is needed for computation: it provides a balance between the
capability to process and to store information, i.e., to have a kind of
memory. Sensitivity thereby provides the flexibility to process dif-
ferent inputs, whereas non-chaoticity ensures that there are certain
localized, but stable patterns which allow to store information for a
certain time.

Where are such computational systems to be found in nature?
Again, we may take the CA case and say that whenever a system
can be modeled by CA, and the corresponding CA is at the “edge of
chaos”, which seems to mean that the CA is sensitive but not chaotic,
the CA is prone to show universality, which is a sign of computation.
As mentioned before, the system sustaining computation in this sense
could also tune itself to such a critical point where computational
properties can emerge spontaneously. Such self-organized criticality
[2] has now been found in many natural systems. It seems that bi-
ological systems are the most likely candidates for such behaviour,
for the reversibility and thermodynamic equilibrium usually assumed
in physical systems hinder the emergence of the kind of dissipative
structures that are needed here.

4 CONCLUSION

Let us summarize. Any natural system showing “computation” is
a dynamical system, because there must be an underlying, dynam-
ical process sustaining the “computation”. We may thus take the
broad class of dynamical systems, which are described by the well-
developed theory of dynamical systems, and ask which systems, out
of all dynamical systems, are the “computational” ones. A conve-
nient way to study this question is by looking at cellular automata
(CA), which are networks of simple processing units capable to pro-
duce the complicated dynamical behaviour expected to provide for
computational processes. As we have argued that computational uni-
versality, in the Turing machine or some other sense, is a sign of a
computational system, we are especially interested in CA that show
a dynamical behaviour which can be shown to allow for computa-
tional universality. For the particular simple class of the elementary
cellular automata (ECA), it turns out that the ECA rules with the
most complex behaviour are sensitive but not chaotic, in the dynam-
ical systems theory sense. It is in this class that the ECA rule known
to be Turing-universal, rule 110, is to be found. With certain caveats,
these findings agree well with the “edge of chaos” thesis advanced by
Langton [17] and others, which says that the systems with dynamics
between simple periodic and chaotic behaviour are the ones capable
of bringing out emergent computational processes.

Building on this case, we may now generalize these findings to
the claim that “natural computation” needs to show the following
characteristic features: simulation, hierarchy and universality. Let us
expand on this further.

By simulation, we mean that computation has a representational
character. It needs signs to represent objects, events or processes.
These signs or symbols are then processed by the computational
process, thereby simulating another process. The notion of sign or
symbol is thereby taken in a wide sense. The case of analog com-
putation may serve here as an example. Typically, the problem is
to solve a differential equation. The differential equation describes
a physical system, for example planetary motion. The analog com-
puter then emulates the same differential equation. Physically, this is
possible because the laboratory system, i.e. the analog computer, as
a physical system, can show the same behaviour, in other words, it
is describable by the same equations. While planetary motion is not
susceptible to manipulation, the system in the laboratory can be ma-



nipulated, thereby allowing to compute the behaviour of the inacces-
sible system. Computation is about solving problems by simulating
the problem with a more accessible system. In order to simulate one
system by another, we need a map that relates the two, thus we need
a notion of “representation”.

With this, the notion of an “observer” comes into play. There must
be some entity or process which provides this “representation”. In
this sense, computation is observer-relative. It is however beneficial
to separate here clearly semantical issues from syntactical ones. Al-
though the “observer” provides the semantics for the computational
system, the notion of “observer” as a syntactical or computational
entity or process must be a weak one. In particular, if there are com-
putational capacities attributed to an “observer”, they must be weaker
than the observed computation. We call this feature “hierarchy”: the
process of mapping a problem or process to another problem or pro-
cess which allows for a simulation must be simpler than the actual
process carrying out the simulation or “computation”. If this were
not the case, we could have trivial processes carrying out very com-
plex computational task, because the difficult task is already carried
out when encoding and decoding the computational system, that is,
when translating one system to another. Because the notion of “ob-
server” is in this sense restricted, the notion of computation proposed
here becomes observer-independent in the sense that the computa-
tional systems must display certain “objective” properties, first of all
a form of universality.

By universality, we mean that a computational system should dis-
play some form of universality in its computational behaviour. A sys-
tem that simply allows to map one value to another value is not doing
a computation but a calculation. Such calculating systems abound
in nature. For example, one may say that the planets “calculate”
their own motions, but they do not compute because they lack the
universality that allows to deal with different input or problem in-
stances. Universality means the capacity to deal with different, in
the best case all posable problems. As was pointed out in the CA
case, there are however different forms or notions of universality de-
visable, which may bring about that different systems can be called
“computational”.

A clear case of universality is exhibited by the Turing machine
model of computation. The universal Turing machine is capable to
simulate any other Turing machine. Universality makes thereby a
computational system powerful, at the same time, it brings about its
limitation. We may ask the system a question, in a perfectly ade-
quate manner, but the answer cannot be given. This relative nature
of computation can also be found with simpler models. For exam-
ple, the problem of squaring the circle can be clearly formulated in
the terms of pure Euclidean geometry, but it cannot be solved within
this theory. What the Turing concept distinguishes from these ear-
lier conceptions with their corresponding “unsolvability” theorems
is that it is, by the “Church-Turing thesis”, thought of as an abso-
lute concept. If this is right, the power of universal representation, as
formalised by the concept of the universal Turing machine, entails
the power of self-reference and this leads inevitably to principally
unsolvable problems. Computation is both a relative and universal
notion: it should be universal in respect to the questions that may be
asked and may turn out to be relative in respect to the answers it can
provide.

Now, not every system is capable of showing universality. As we
claimed above, dynamical systems must show certain characteristics
to possibly sustain complicated computational capacities such as uni-
versality. In particular, based on the ECA case, these systems seem
to be at the “edge of chaos”, but further research is needed to sub-

stantiate this claim.
Let us conclude by briefly putting the notion of computation char-

acterised here in perspective to some of the ideas and concepts of
computation proposed in the philosophical literature. In a series of
papers [22, 23, 24], Piccinini has argued against the “semantic view
of computation”, attributed e.g. to Fodor [12], and stressed a “func-
tional” and “mechanistic” view on computation. I agree, for the rea-
sons stated above, that it is reasonable to understand computation in
syntactical terms. However, Piccinini’s account seems to boil down
to a vindication of the standard models of computation, such as fi-
nite state machines and Turing machines, thereby explicitly exclud-
ing other models of computation, such as analog computers [22] or
neural networks that have continuous-valued input and outputs [24].
Such an understanding of “computation” seems to me both too wide
and too narrow: too wide, because it attributes computational capac-
ities to very simple process, which merely calculate but not compute
according to the view developed here, and too narrow, because the
characteristics of computation we have identified above may also ap-
ply to e.g. analog models of computation or neural networks with
continuous-valued input.

On the other hand, Shagrir maintains that computation is a rela-
tive notion that is evoked to explain how certain systems, such as the
brain, can perform “semantic tasks” [27, 28]. Shagrir substantiates
this view by a concise analysis of the practise in the brain and cog-
nitive sciences to explain “computational” features by “information-
processing mechanisms”. In this account, planetary systems, stom-
achs, etc. do not compute because the processes involved are not de-
fined in terms of representational content [27]. At the same time,
the concept of analog computation fits neatly into this framework,
as it exemplifies the modeling aspect of computation, that is charac-
terised, for Shagrir, by the isomorphic nature of the representation
function with respect to the (computational) modeling functions and
the mathematical relations modeled [28]. While I agree with Shagrir
that the notion of computation in neuroscience usually involves se-
mantic aspects, I think that it is reasonable, as explained above, to
distinguish the syntactic and semantic aspects of computation. I re-
serve the notion of computation for the former, whereas the latter
should be covered by the analysis of notions such as “representa-
tion”, “information” or “sign” which I intend to discuss elsewhere.
It seems to me that the modeling aspect of computation in Shagrir’s
account belongs to the syntactic side, whereas the question of repre-
sentational content is ultimately a semantical issue, involving general
semiotic and epistemological problems which can to a certain degree
be treated separately to the question of “natural computation”.
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