
1

Computation as knowledge generation,
with application to the observer-relativity problem

Jiří Wiedermann

Institute of Computer Science of AS CR, Prague, Czech Republic
email: jiri.wiedermann@cs.cas.cz

Jan van Leeuwen

Center for Philosophy of Computer Science, Utrecht University, the Netherlands
email: J.vanLeeuwen1@uu.nl

“Creation of knowledge ... now has to be understood
as one of the fundamental processes in nature;
fundamental in the sense that one needs to understand
them in order to understand the universe in a
fundamental way.”

D. Deutsch [6]

Abstract. We elaborate our recent thesis [17] stating that
computation is a process of knowledge generation. We give
two conditions for a process to be computational, i.e. to be a
knowledge generating process. First, the epistemic domain in
which the computation is carried out must be known, and
second, there must be evidence that the generated knowledge
is indeed derivable within the underlying domain of discourse
by the rules governing the domain and the underlying
computational mechanism. The fulfillment of these conditions
may be decided by an observer which, again, is modeled as a
computational process according to our definition. As a
consequence, our definition of computation is observer-
relative. The viability of our definition is scrutinized by
several examples of computations considered widely in the
literature. Among them, we consider the question whether a
rock can compute as well as some aspects of Searle’s Chinese
room thought experiment. The examples illustrate that the
epistemic approach to computation brings valuable new
insight into the nature of computation and helps to resolve
some classical problems related to these examples.

1 INTRODUCTION
When one wants to investigate whether computation is
observer-relative, one has to specify the meaning of three key
notions of this paper: what is computation, what is an
observer, and how do these notions link up.
At first sight it seems surprising that, after sixty years of living
with computers, we still ask what the essence of computation
is. For people working with computers and computations all
their life, the answer seems clear. All agree that computation
is a process. Then, depending on their point of view, they
usually require that a computational process satisfies some
additional properties: it must conform to a formal model of
computation [2][7], it must be physically realizable [6], or

must be driven by a program [5], etc. Under such definitions
of computation, the question boils down to the problem of
identifying or recognizing whether a given physical gadget
possesses the required qualities. We call this the classical view
of computation. This view clearly leads to the conclusion that
computational properties are physical, i.e. are intrinsic to
physics, and that as such computation cannot depend on the
observer, no matter what or who the observer is.
The classical view of computation has proved to be a very
potent paradigm. It has lead to the development of the theory
of computability and computational complexity as we know it
today, showing what can and what cannot be computed by the
underlying models of computation and how efficiently this
can or cannot be done. All this is carried out in the observer
independent framework. However, we seem to be reaching the
limit of this approach. Namely, when it comes to solving the
omnipresent problems e.g. related to artificial intelligence, and
especially to cognition, we do not know at all what the actual
potential of our computers is. For instance, we have no good
clue of how to program computers in order to (learn them to)
think, to be conscious, to acquire, understand and use natural
languages or to create new knowledge. All these qualities are
considered to be observer-relative qualities.
As a further argument, consider the questions recently posed
by Abramsky in [1]: “Why do we compute? What do we
compute?” Note that he does not ask “how do we compute?”,
leaving the question of the implementation of computational
processes aside. Obviously, Abramsky aims at an answer from
some systematic theory holding for “all computations”, i.e.
holding for all known and so-far unknown computational
processes. From this point of view Abramsky’s questions are
not general enough. We are increasingly aware that computing
is a far more common phenomenon than we believed a few
decades ago. For example, many processes in so-called natural
computing (or “computing by nature”) can be viewed
meaningfully as computational. Here computation exists
aside of human activities. Thus, more general questions arise:
“Why is there computation?”, and “What is there computed?”
Our answer to these questions is: computation is there in order
to create knowledge, and knowledge is what is computed
there. Thus, computation is a far more profound notion than it

mailto:jiri.wiedermann@cs.cas.cz
mailto:J.vanLeeuwen1@uu.nl

2

seemed at first. Our answer implies that computation is not an
observer-independent process. It seems that within computer
science, little attention was given so far to the possibility that
the identification of processes as being computational can
depend on an observer. One of the reasons is the relatively
restrictive view of computation in computer science. Namely,
in this field, computations are designed and analysed against
the backdrop of a concrete computational model. There is no
room for questions of the sort “does this model indeed
compute”? For a computer scientist, a computation is what
any of the accepted computational models does (cf. [7]). He
takes for granted that whatever mechanism he considers, a
computational process ensues, by assumption. Interestingly,
when solving a concrete problem, computer scientists
inevitably become interested in the goal of such a process.
This has led to broader views of computation, to include the
desired computational features and results into the definition
of computation. Questions about the meaning of computation
have appeared only recently [1][4][17].
In this paper we will study the question what computation is
and give support to the view that computation is an observer
relative phenomenon. We will do so e.g. by specifying and
formalizing, to some extent, the properties that seem to be
required for an observer so he can give a qualified judgment
about the observed process. In this context we will view an
observer as a decision process that, in order to decide, must
obey the same rules as the processes he observes. This
scenario allows a more qualified discussion of conditions
under which an observing process can issue its decision.
This paper is a continuation of our earlier paper [17] in which
the idea of computation as knowledge generation was
presented for the first time. Here we further elaborate our
thesis by determining the conditions for a process to be
declared to produce knowledge. To this end, a process is
considered within the context in which it is used. As a result, a
definition of computation is obtained which allows the
identification of computational processes. This definition is
then applied to the notion of observer itself, modelling him as
a computational process as well. We specify what an observer
must know in order to reach its decisions. We argue that the
paradigm imposes certain limits on the capabilities of
observers, forcing them to stay within certain frames of
reference. We test the viability of our definitions on various
examples of classical and non-classical computation. This
includes the current programming practice using the standards
of software engineering, the widely considered question
whether a rock can compute, the example of an analog
computer for measuring the height of a cliff, the Chinese room
thought experiment, and the nature of cognitive computations.
Our paper aims to contribute to the further understanding of
computation in several ways. First, it leads to a further shift in
appreciating the essence of computational processes, by
stressing their epistemological aspect. Conditions are stated by
which a process can be qualified as being computational, i.e.,
as a process generating knowledge. A new intermediate stage
between computations (in the classical sense) and intelligence
- viz. ability to produce knowledge – is identified. Second, we
propose a scenario in which an observer is modelled by the
same means as a computation. The use of our more detailed
definition of a computation allows us to analyse several cases

in which an observer has to reach his judgement whether an
observed process is computational. Third, the potential of our
approach is demonstrated by applying it to widely known
“problematic” cases of computation from the philosophical
literature. Finally, our approach has great methodological
potential, in allowing us to overcome the narrow view of
computations as merely being physical processes. The view
allows us to concentrate on the main meaning of computations
– viz. knowledge gleaning, accumulation and creation. We
believe that, as a paradigm, the new view may be equally
potent for the field of cognitive computation as the classical
view was for classical computability and complexity theory.
The paper is organized as follows. In Section 2 we elaborate
the idea of computation as a knowledge generation process
and introduce the necessary terminology. The main result of
Section 2 is the definition of computation, seen as a process
that must fulfil certain conditions in order to be considered as
computational. In Section 3 we sketch the scenario of a
computational agent “observing” another agent at work and
discuss the possibilities of the observer concerning the ways
in which he can gain knowledge about the observed process.
In Section 4 we examine the power of our approach on
various examples of computations generally investigated in
the literature. Section 5 contains the conclusions.

2 WHAT IS COMPUTATION
2.1 Computation as knowledge generation When it comes
to considering the possibility that computation might not be an
observer-independent phenomenon, one has to abandon the
stance that computation is a process intrinsic to physics.
Instead of the “white box” approach to computational
processes through the underlying mechanisms that realize
them, one has to concentrate on the properties that make a
process computational rather than anything else. This is the
approach coined by the authors in [17]. According to this
approach, the property that distinguishes computational
processes from any other processes is the fact that the former
are recognized to explicitly generate knowledge. This being
said, one must of course state what is meant by “knowledge”.
The definition of knowledge is an elusive matter attempted by
generations of philosophers, scientists, lawyers, etc.
Nevertheless, for our purposes the following “enumerative”
definition will do (cf. [18])
“Knowledge is a familiarity with someone or something,
which can include facts, information, descriptions, skills or
behaviour acquired through experience or education. It can
refer to the theoretical or practical understanding of a
subject. It can be implicit (as with practical skill or expertise)
or explicit (as with the theoretical understanding of a
subject); it can be more or less formal or systematic.”
In [17] numerous examples are given. These range from the
computations of finite and infinite automata, through the past
and recent uses of information technologies (scientific
computing, transaction systems, data bases, search engines,
etc.) up to computations by nature, cognitive computation, and
non-Turing computations (e.g., computations with real
numbers and compass-and-ruler constructions). These
computations can all be seen as knowledge producing
processes.

3

 Mathematics, logics and

computer science
Philosophy and natural
sciences

Mind and humanoid cognitive systems

Domains of
discourse
Elements of
knowledge
Inference
rules

Final form of
knowledge

Abstract entities

Axioms, definitions

Deductive system,
programming languages

Predicates, theorems,
proofs, solution

Ideas, empirical data

Facts, observations

Rational thoughts, logics

Statements, theorems,
hypotheses, explanations,
natural laws, prediction

Perception, cognition

Stimuli, multimodal concepts, beliefs, episodic memories

Rules and associations formed by statistical learning

Conceptualization, behaviour, communication, natural language,
thinking, knowledge about the world formed mostly in a natural
language and in form of scientific theories

If we accept the given extensional definition, knowledge is not
observer-independent. After all, the decision on “familiarity
with someone or something” is in the eye of the beholder,
especially when this concerns knowledge that is not generally
accepted. Therefore computation as a process generating
knowledge in this sense must be observer-relative. Obviously
this statement is not yet fully satisfactory: we must state how a
particular computation is related to the specific knowledge it
generates. A computational process is not allowed to generate
completely arbitrary knowledge.
Each computation is required to generate knowledge over the
domain for which the underlying system was designed or to
which they both evolved. Similar to how intelligent behaviour
of an embodied robot arises from the interaction between
brain, body and world, so is knowledge generated by
computation in its interaction with the underlying knowledge
domain. More formally, there must be a way to verify the
correspondence between a given computation and a certain
domain over which the computation generates its output in the
form of knowledge. For this, every computation will exploit
some cognisance of the underlying knowledge domain. A
computation is obliged to only use the facts, statements, rules
and laws that describe the given knowledge domain and that
hold in this domain. We say that a computation is rooted in its
knowledge domain.
The required attributes of computations can take different
forms, depending on our knowledge of the underlying
knowledge domain and on our ability to formally describe it,
including the rules and laws holding in this domain. The
above table gives several examples of knowledge domains
and their different degrees of formalism. The examples show
what aspects must be taken into account when we want to
recognize a process as being computational, i.e. as being a
knowledge generating process.
2.2 Structure of knowledge In what follows we assume that
the knowledge domain that underlies a computation is given
in the form of a theory. We will not consider theories in the
narrow formal sense as in e.g., logic or mathematics. Rather,
we apprehend theories as an analytical tool for describing,
understanding, explaining and answering queries, for
providing solutions and predictions in various areas of science
or life, or for the generation or control of behavior. Usually, a
theory bears the form of facts, sentences, statements,
principles or linguistic descriptions needed for deriving other

statements. Nevertheless, other forms of theories are possible
as well. For instance, a theory can have the form of a semantic
network, a set of restrictions holding for a computation, it can
be a map, a scheme, etc. Knowledge produced within the
scope of such a theory will have to be of a form that fits the
“language” of the underlying domain. The “new” knowledge
may be kept in a knowledge base that becomes a part of the
theory under consideration. Note that there is no need for such
a theory to be correct or truthful w.r.t. the “real world”. A
theory can even be based on erroneous, unproven or non-
verified beliefs and facts. For example, consider some theory
in which various myths produce “knowledge” in the form of
explanations of various phenomena (such as the weather) due
to the intervention of divine beings. Within such a theory,
whatever (knowledge) is derived need not involve truth “w.r.t.
the correct theory”. Yet whatever is derived within a flawed
theory is formally considered to be knowledge in that theory
(and thus truthful within such a theory).
A possible way of viewing such a highly generalized notion of
a theory is to see it as a model of the “world” in which a
computation is rooted (cf. [16]). An important characteristic of
the notion of theory is that knowledge according to it can be
generated time and again from the same base facts and
principles, e.g. by computations that do so. In evolving
domains, the appropriate theory for the domain will need to
evolve as well.
From the table above one can see that, from left to right, the
domains range from theory-full domains with formal, abstract
theories to theory-less domains that admit no formal
descriptions for capturing e.g. behavior in common life
situations (cf. [13]). At the same time, the table characterizes
the different levels of formalization, completeness and
truthfulness of known theories.
Heterogeneous knowledge characterizes more complex cases.
In this case, natural language is an important mediator among
theories. Semantics mainly, rather than syntax, is of crucial
importance here. Semantics assigns meaning to the individual
words and this meaning has the form of knowledge (cf. the
previous enumerative definition of knowledge also includes
behavior, thus even encompassing embodied semantics).
Semantics is knowledge and therefore it is to be represented
by a theory again. From this viewpoint all computations,
including the computations that generate knowledge based on
understanding natural language, bear a homogeneous

4

structure. The knowledge framework behind a computation
will normally be based on cooperating theories. This is
extremely complex since in principle to each word a theory (in
our general sense) is attached, controlling the proper use of
this word. In general, such a theory depends not only on the
word at hand, but also on the context in which the word is
being used. In the case of embodied cognitive systems the
context does not only refer to the grammatical context, but
also to the entire perceptual situation. All this leads to a
complex intertwining of the respective theories. In general we
do not know much about such cooperating theories.
2.3 Defining computation Based on the considerations as
given, we will assume that computations are rooted in
knowledge domains and that there exists a theory behind each
computation. Within this theory the respective computational
process generates knowledge expressed by means of this
theory. Of course, in order for this statement to hold there
must be evidence (e.g. a proof) that explains that the
computational process works as expected. The evidence
should ascertain that the process generates the specified
knowledge and that this knowledge can be inferred from the
underlying theory. The latter is the key to the following
definition. In this definition we assume that the input to a
computation is part of both the underlying domain (and thus
of the theory) and the initial data of the computational
process. The notion “piece of knowledge" will denote any
constant, term or expression which belongs to the theory or
can be derived using the respective inference rules of the
given theory. In the following definition we will make use of
the terminology used in logic, but bear in mind that our notion
of “theory” is much broader than in logic and also includes
“informal” theories.
Definition: Let T be a theory, let ω be a piece of knowledge
serving as the input to a computation, and let κ be a piece of
knowledge from T denoting the output of a computation. Let
Π be a computational process and let E be an explanation.
Then we say that process Π, acting on input ω, generates the
piece of knowledge κ if and only if the following two
conditions hold:

• (T, ω) ├ κ, i.e., κ is provable within T from ω, and

• E is the (causal) explanation that Π generates κ on input ω.
We say that the 5-tuple C = (T, ω, κ, Π, E) is a computation
rooted in theory T which on input ω generates knowledge κ
using computational process Π with explanation E. The device
or mechanism realizing process Π is called a computer. □
Note that, under suitable conditions computations can be
composed to obtain new computations, as required by the
definition. The property of compositionality is an important
one to have.
In the above definition, ω may take any form, e.g. it may be a
set of numbers, a query in a formal or natural language, or a
statement whose validity we are looking for, etc. The
computational process Π acts as a parameter of a computation.
Thus, the same knowledge may be generated within the same
theory by different computational processes. A change of
computational process will result in a different explanation.
E.g., the realization of a computational process on a Turing
machine requires a different explanation than a realization of
this process on a neural net. Whatever Π has to know about T

must either be encoded in the design of Π and in ω or Π must
have access to T. The condition (T, ω) ├ κ implies that T is
closed with respect to the inference rules of T. This means
that, once κ is computed, it can be added to T to extend the
knowledge base of T. This can be used, e.g., in an interactive
computation where after each interaction, the knowledge base
is updated by the recently computed piece of knowledge.
When a computation can modify the underlying theory we
speak of evolutionary computation. In this way we can model
potentially infinite, interactive, evolutionary computations (cf.
[15]). Moreover, the formalism also enables us to define
universal computations for some domain D which is a subset
of T, i.e., a computation where the same computation process
Π is used for generating corresponding pieces of knowledge
for all ω in D. However, we will not pursue this in this paper.
The two conditions in the previous definition can be shown to
be needed. We will demonstrate this by means of some
examples from formal language theory, since computations in
this domain are well understood.
Note that without the second condition it could happen that
the computational mechanism Π is “weaker” than theory T.
E.g., Π could be some computational process generated by a
finite automaton, whereas T might be a theory of recursive
functions. Then it could happen that (T,ω) ├ κ but there
cannot be any E proving that Π generates κ. If Π is “stronger"
than T, the computation can still work. For instance, Π could
be a process generated by a pushdown automaton whereas T
can be theory of regular expressions. However, it may happen
that Π is “not compatible” with T. E.g., think of Π being a
“process” generated by a logarithmic ruler and T the theory of
addition of natural numbers. Then Π cannot compute the sum
of two numbers, because the first condition is violated.
A proof that T proves κ on input ω is derived entirely within T
and this proof can even be included in κ. This need not be the
case with the explanation that Π generates κ on ω. For
instance, Π might involve relativistic computations which
assume the laws of relativistic physics. These laws need not
be a part of T. On the other hand, it can happen that Π makes
a direct and exclusive use of the means of T (that is, it
“implements” the operations from T). For instance, this is the
case when T is the λ-calculus. Then E is equivalent to (T,ω) ├
κ. Interestingly, when considering knowledge generating
processes in the brain we accept the fact that thinking occurs
in a theory-less domain T best described in a natural language.
When attempting to prove that (T,ω) ├ κ, we can reason only
informally and rely on the fact that the brain (or the mind, for
that matter) “implements” our mental procedures. This means
that the “linguistic proof” of (T,ω) ├ κ serves at the same
time as evidence that the brain indeed generates the required
knowledge.
Finally, observe the natural (and therefore elegant) way in
which our approach accommodates the previous efforts to
define computation by finding a common procedural platform
for all kinds of computations. Using the previous notation, in
the majority of the classical approaches to computation, a
computation would look like this: C = (Π). No other
conditions are required from Π. In our approach we have
found a different common denominator of all computations:
this is the respective knowledge generation aspect.

5

3 COMPUTATION AS AN OBSERVER-
RELATIVE PROCESS
The given definition of computation requires a process to
satisfy several conditions in order for it to be a computational
process. Who or what can decide whether the conditions from
the above definition are satisfied? We shall call any entity
designed to do so an “observer.” How can an observer decide
whether a process is a computation (i.e., a computational
process)? How can an observer do it? Does it need a kind of
`Turing test’ for computational processes?
For the observer to be a realistic party, we have no alternative
but to view him as a computational process also. This brings
us to model the situation in which a computational process
(the observer) “observes” another process with the goal to
decide whether the observed process is computational one or
not. Can an observer achieve this, in a universal sense? (As an
ultimate case, we will have to face the situation in which an
observer is asked to test, and presumably affirm, another
observer for being computational.)
Following our thesis, we are obliged to use the same
definition of computation for both the observer and the
process to be observed. That is, for both parties the previous
definition must be used. Under such a scenario the decision
whether an observed process is computational clearly depends
on the knowledgeability and computational abilities of the
observer. The observer is assumed to have all information
required by our definition of computation at its disposal, i.e.,
the entire 5-tuple C = (T, ω, κ, Π, E) of the observed process.
This 5-tuple serves as the input to the process run by the
observer. Without it, the observer has a totally different task
which we will not consider here.
The task of the observer is to verify that C is indeed a
computation. In case C is a computation according to our
definition, the output (or verdict) of the observer, i.e, the
knowledge produced by him, consists of a single bit with
value 1. Otherwise, the verdict is 0. Thus, what an observer
does is:
 checking whether (T, ω) ├ κ, and
 checking whether E is the explanation that Π generates κ

on input ω.
Checking the first condition requires the ability to derive a
chain of derivations within T starting with ω and ending with
κ. In order to check the second condition, the observer must
be an “expert” which is able to “judge” the sufficiency of
explanation E. We assume that the expertise of the observer is
given by a theory T’. The 5-tuple characterizing the
computation of the observer is then C’ = (T ∪ T’, C, v, Π, E’),
with v є {0,1} representing the verdict and E’ an explanation
validating the generation of the respective verdict.
In general, there are several possibilities how C can become
known to the observer. A straightforward situation occurs
when the observer himself acts as a designer of the
computation C, since in this case he will be aware of the
information needed to design a computation according to his
own intentions. This is the most frequently encountered
situation in programming. A similar situation occurs when the
information is provided to the observer by a “third”,
trustworthy person. Next, in case the observer is not the

designer of a computation, he alone is forced to reconstruct, or
discover the missing information about this computation. This
is the situation we find ourselves in when trying to decide
whether a certain natural process (perhaps arising by
evolution) is a computational process. In theory-full domains
it may be possible to “mechanically” verify the correctness of
a computation, e.g. with the help of theorem provers.
In all cases, the scenarios make clear that our definition of
computation is observer-relative. It may well happen (and in
practice it does) that an observer sees an observed process as a
computational process whereas other observers don’t. For
instance, until the nineteen eighties or so we did not speak
about “computations by nature” simply because we, in the role
of observer, were not aware of the computational mechanisms
that hide in many processes occurring in nature. Vice versa, it
may also happen that an observer wrongly decides that an
observed process is computational because his decision may
be based on incorrect assumptions concerning the underlying
process. This may especially happen in cases where there is
no sufficiently formalized and verified epistemic theory in
which the computation is rooted. In theory-less domains,
observer relativity follows mainly due to the vagueness of the
involved reasoning. In most cases the reasoning is sketchy and
relies on the ability (or the willingness) of the observer to
complete the missing parts of an argumentation and to fill in
the “holes” in the respective reasoning. For instance, for a
theologian an explanation of God’s existence may be fully
acceptable but it will not be so for an atheist.
We argued that observer relativity is often explained by
insufficient precision of argumentation or low competency of
the observer. These reasons may not be sufficient to explain
observer relativity in all cases, but they are always present in
some form. In fact we will argue that there are deeper reasons
for the phenomenon that make it inevitable, reasons rooted in
the very nature of computation.
The obiter dictum here is that any computational observer is
bound to make `personal choices’ that are not supported by
other observers. Namely, we prove that there can be no
universal observer O which for each process rooted in theory
T decides whether it is a computational process or not and do
so in agreement with the verdict of all other observers. In
order to see this we will construct a scenario mimicking the
argument underlying Rice’s theorem in computability theory.
In what follows we assume that all processes are rooted in the
same theory.
Proposition. There exists no universal observer whose verdict
always agrees with the verdict of every other observer, for
each 5-tuple C= (T, ω, κ, Π, E).
Proof (Sketch). Suppose we had a universal observer O of the
claimed quality. We may assume that O is non-trivial, i.e. that
processes Q and R exist such that O decides that process Q is
computational but that R is non-computational. (If Q or R
does not exist, then O decides that every process is or is not
computational, which is not what we expect but maybe this is
his view of the world. We assume otherwise.) Now design a
process P as follows. P uses a copy of the computational
observer process O and works as follows, acting on any
observed piece of knowledge that represents some process as
input:

6

“P observing process X does the following:
 if O decides that the process of `X observing process X’ is

computational, then P continues to behave like R, else
 if O decides that the process of `X observing process X’ is

non-computational, then P continues to behave like Q;”
Because O is assumed to be universal, this defines a valid
process P. But what happens if P observes (a copy of) itself?
Then we have P observing process P and
 if O thinks `P observing process P’ is computational, then

by definition the process of P observing process P actually
continues to behave like R (which is non-computational),
else

 if O thinks `P observing process P’ is not computational,
then the process of P observing process P continues to
behave like Q (which is computational like the steps
that led up to this).

This leads to a contradiction. Whatever O's abilities are, O
cannot issue a correct verdict from the viewpoint of P. Hence
O cannot be universal in the claimed sense. □
The given proposition shows that computational observers are
bound to err on some processes, if we merely require them to
be general observers. It is almost a ‘proof’ of the observer-
relativity of computation. Nevertheless, the proposition may
be countered, by attacking some of the assumptions on which
the argument is based. Short of abandoning the assumption
that observers can be computational, the only alternative is to
accept their limitation or restrict their range of inputs. Are
observers only useful if they are restricted to being domain-
specific with theories which they can handle?

4 APPLICATIONS
Our definition of computation (cf. Section 2) requires that for
a computational process the following questions are answered:
what is the underlying knowledge domain, what knowledge is
being computed, and how is it computed? Thus, in order for
an observer (“agent”) to qualify a process as computational,
he must decide whether these questions can be answered
adequately for the observed process.
First of all, note that the proposed definition of computation
corresponds very well to the contemporary theory (and
hopefully, also to the practice) of programming. The designer
of a program must be aware of a theory T and of the required
result κ, and he or she must be convinced that (T,ω) ├ κ. Then
there is a computational model in which the designer has to
‘program’ a computational process Π generating the required
knowledge κ. The designer has to deliver also the evidence E
that validates the computation, since otherwise one cannot be
sure that the program does what was assumed. Obviously, our
definition will work for any reasonably formalized model of
computation.
Let us verify the strength of the definition, by applying it to a
number of types of processes for which it is not obvious, at
the first sight, whether they can be seen as computational
processes.
First, let us investigate a notorious example of a “computing
rock” (cf. [3]). If somebody claims that a rock can compute
(or that it implements any finite automaton, for that matter)
then he or she must be able to provide arguments or answers

for the following. First, what is the underlying knowledge
domain (described by T) in which a computation of a rock is
rooted? Second, what is the input ω to rock’s computation and
what is the output κ? Third, what is the proof that (T,ω) ├ κ?
And, last but not least, what is the causal evidence E that the
rock will produce the expected output κ on a given input ω?
The claim that a rock possibly computes depends, of course,
on the imagination of the observer, but stating the scenario of
such a computation is the hard part of the proof that a rock
computes. For instance, one can see a rock as an analog
gadget that “computes” its own melting point. Namely, it is
known [8] that igneous rocks form through the crystallization
of magma. There is a considerable range of melting
temperatures for different compositions of magma. All the
silicates are molten at about 1200°C and all are solid when
cooled to about 600°C. Often the silicates are grouped as high,
medium and low-melting point solids. Thus, a set of different
silicates can serve as an analog computer for approximately
determining the temperature. This is an example where the
underlying knowledge domain would include at least geology
(or volcanology) and (material) physics. It illustrates a domain
of discourse which cannot be described formally; yet for the
experts, the usual way of dealing with knowledge in the
aforementioned sciences is enough for providing qualified
arguments supporting the view that a rock can indeed realize
certain computations. This makes the computation performed
by our rock computer observer-relative.
The previous example was an example of a measurement. In
general, a measurement is a process that for the elements of a
theory decides, whether an element at hand satisfies a certain
property (temperature in the previous case), or possibly, to
what degree the property is satisfied. Thus, a piece of
knowledge is assigned to such elements and therefore the
underlying process is a computational process. More
generally, the question arises whether experimentation can be
seen as computation.
Experiments are carried out in order to verify or refute the
validity of a conjecture or a hypothesis. Experiments provide
insight into cause-and-effect by demonstrating what outcome
occurs when a particular factor is manipulated. Experiments
vary greatly in their goal and scale, but always rely on
repeatable procedure and logical analysis of the results. This
description fits perfectly into our framework of computation.
The goal of an experiment is to gain knowledge in the domain
of a scientific theory. An experiment is typically carried out in
a controlled environment consisting of a physical device, or a
sample of population of living organisms, with the help of
observations, etc. In fact, the setup of an experiment
resembles that of an analog computer. The explanation is an
important part of any experiment and may even represent the
conclusion of the experiment. Special kinds of experiment are
thought experiments (Gedankenexperiments). These
experiments concern some hypothesis or theory and are
designed solely for the purpose of thinking through their
consequences. Thus, the goal of a thought experiment is to
produce knowledge, and its framework can easily be recast
into the context of our definition of computation.
Next, let us inspect another example of a computation
involving a rock, described in [11]: “Consider the example ...
of a rock falling off a cliff. The rock satisfies the law s=1/2gt2,

7

and that fact is observer independent. But notice, we can treat
the rock as a computer if we like. Suppose we want to compute
the height of the cliff. We know the rule and we know the
gravitational constant. All we need is a stop watch. And we
can then use the rock as simple analog computer to compute
the height of the cliff.” How does this idea of a computer
conform to our definition of a computation? First of all, it
appears that for computing the height of a cliff, a rock alone is
not enough. In addition to it we need both a stop watch and a
person who would observe the falling rock, operate the stop
watch and know how to compute the distance travelled by the
falling rock given the duration of the fall. Thus, in this case
the “computer” consists of a rock and of a person endowed
with the abilities just described possessing a stop watch. The
cliff serves as an input. The theory behind the computation
and the explanation why it works is quite complex if all its
details should be mentioned. It will include Newtonian
physics, knowledge of the purpose of a stop watch and its use,
cognitive theory (for explaining the visual observation ability
of the observer and his reaction times, his capability to
perform arithmetic operations), etc. But in principle, all these
details can be delivered with sufficient plausibility. We
conclude that, indeed, the whole system as described does
perform a computation according to our definition. (By the
way, considering the complexity of the components of this
analog computer, one could hardly call it “a simple analog
computer” as Searle does.)
Note that arriving at this conclusion has only been possible
due to our insight into the entire process. An observer having
no idea about the purpose of stop watches and about the laws
satisfied by falling bodies, can never come to such a
conclusion. Therefore, this instance of computation is clearly
observer-relative.
As a third example we consider Searle’s Chinese Room
Argument [9]. In this thought experiment Searle considers a
person speaking only English, located alone in a room. This
person follows English instructions for manipulating strings of
Chinese characters in such a way that to a Chinese outside the
room it appears as if someone in the room understands
Chinese. Searle claims that the person in the room cannot
understand what the computation is about: the person cannot
make the link between the syntactic manipulation of symbols
and their semantics. We consider a far simpler question: can
the operator learn that the process he is participating in is a
computational process (i.e., a process generating knowledge)?
To decide this we will use our definition of computation.
First of all we must ask what knowledge domain is behind the
computation performed by the room. Obviously, it is the
“theory of being Chinese”. This is an epistemic theory in
which not only the syntax of the language, but also its
semantics must be described. As explained in the previous
section, semantics of a word depends on the context in which
it is being used. Learning this context might need consultation
of the “model” of the (Chinese) world (which must be
available in the form of another theory or theories) and also
inspection of the past contexts in which the word at hand had
been uttered in order to recover the history and past
information. Using similar information resources an answer
can be generated. Having a theory of being Chinese the next
step is to decide how the derivations (computations) within

such a theory will be implemented on the available computer.
This is an easier task and indeed, it can be implemented (albeit
in an extremely inefficient way) with the help of a human
operator manipulating a set of boxes filled with various cards
inscribed by Chinese characters, in accordance with the list of
English instructions. Having all this information available a
non-Chinese observer can verify that the conditions from the
definition of computation are met by the process in the room.
By the way, this observer cannot certify that the room “speaks
and understands Chinese” – the observer can only certify that
what the room does agrees with the information about the
process given to him. Whether the behavior produced by the
room corresponds to the behaviour of real Chinese can only be
certified by “real Chinese”.1 Only then one can claim that the
room behaves as if it understood Chinese.
In general, no computation can understand what it is
computing unless it is designed so. That means that in the
computational mechanisms it must be incorporated how the
desired understanding is provided. In the case of the Chinese
room, this has been ensured by rooting the computation in the
“theory of being Chinese” and the respective world model.
This is a necessary condition for the room, as a whole, to be
able to explain its activities. From our considerations it is
obvious that no part of the room following blindly the
instructions can be endowed by understanding since no part of
the room on a Chinese input produces Chinese output
corresponding to knowledge rooted in the “theory of being
Chinese”. Hence, no uninitiated non-Chinese operator, being a
part of the room, manipulating the cards inside the room can
understand what the conversation is about. Searle is right. But
behold: what if the observer, with all his knowledge required
by our definition about the underlying computation, would
take the role of the operator inside the room? Would he
“understand” then? Well, no. This is because the observer-
operator is not rooted in the same theory (namely in the theory
of being Chinese) as the underlying computation is. What he
can only do is to verify that the process he is participating in
proceeds correctly, as described in his background papers.
That is, he can certify that the room generates knowledge – it
performs a computation, but he cannot state anything more.
Stated otherwise, the observer cannot tell whether the object
inside the room makes the link between the “syntax” of the
generated knowledge and the “semantics” of it, which seems
exactly what Searle seems to claim, but he does it without
ascribing another quality to the process inside the room.
The previous example has identified a new intermediate stage
between computations (in the classical sense) and intelligence,
viz. the ability to produce knowledge. Intuitively, ability to
produce knowledge is a prerequisite of intelligence. What
ingredients make intelligence stronger than computations, in
our sense?
Our final example deals with cognition, namely, with the
question mused upon by several authors (cf. [14]): what is
cognition if not computation? We believe that part of the
problem, if not its essence, in answering such a question lies

1 This situation reminds of the recent episode with President Obama’s
fake sign language interpreter at the occasion of N. Mandela’s funeral,
where the non-deaf people believed that the interpreter was correctly
translating Obama’s speech (December 2013).

8

in the definition of computation considered by the respective
authors. Namely, if one sees a computation “classically”, as
some information process modeled by some machine (e.g. by
a Watt governor rather than a Turing machine, as Van Gelder
in [14] is proposing), i.e. as a process “intrinsic to physics”,
then one immediately loses the main ingredient of cognition,
namely its observer dependency (or rather, its “self-
dependency”, since in many cases a cognitive system can be
seen as an observer viewing itself). It seems beyond any doubt
that the main purpose of cognition is to gain knowledge, and
that the implementation of this process is immaterial. This is
in full agreement with our thesis that computation is a
knowledge generation process. Under this definition of
computation, cognition is a computational process, or
computation, indeed.

5. CONCLUSION
Computation has to be understood as one of the fundamental
processes in nature, fundamental in the sense that one needs to
understand it in order to understand the universe in a
fundamental way. This is the motto of this paper in which
“computation” is substituted by the “creation of knowledge”.
This is perfectly in order since according to our thesis
defended in this paper, “computation is the generation of
knowledge”.
Computation is an observer-relative phenomenon in many
cases. It is inevitably so, unless one severely restricts the reach
of the observers and the domains over which observations are
made, which would exclude many types of process which we
would want to call computational. It has consequences also for
a possible `Turing test’ for computations. The original
question behind the Turing test was whether a human observer
can distinguish a man from a machine in a conversation,
challenging whether the ‘machine’ can be intelligent.
Famously, up to now the answer has been positive, i.e. no
computer appears to be at par with humans in the Turing test.
 Let us consider a simpler question: can we distinguish a man
from a machine producing knowledge (i.e., according to our
definition, a computation)? It appears that there is no
straightforward answer favouring humans. For example,
search engines can produce knowledge in many domains in a
way with which no human can compete. Also, IBM’s Watson
offers a compelling example of computational ability that
triumphs over the ability of humans to demonstrate knowledge
in a large theory-less domain.
Computation is a core notion in computer science. Up to now
the view that computation is a process intrinsic to physics has
prevailed. We believe that the time has come in which it may
be useful – if not necessary - to consider computation as an
observer-relative process. This is because we are increasingly
facing problems where, due to the nature of the problems to be
solved, such a framework is required. This is especially the
case of computations related to AGI (artificial general
intelligence) which are all rooted in theory-less observer-
dependent domains. Changing our thinking of computations
towards the view as knowledge generating processes will help
in the further development of intelligent information
technologies.

ACKNOWLEDGEMENT The work of the first author was
partially supported by RVO 67985807 and the GA CR grant
No. P202/10/1333.

REFERENCES
[1] Abramsky, S.: Two puzzles about computation. In: S. Barry

Cooper, J. van Leeuwen, Eds., Alan Turing: His Work and Impact,
Elsevier, 2013, p. 53-56

[2] Aho, A.V.: Computation and computational thinking. Magazine
Ubiquity, Volume 2011. Issue January, January 2011, Article no. 1

[3] Chalmers, D.J.: Does a rock implement every finite-stete
uutomaton? Synthese, 1996, Vol 108, pp. 309-333, Kluwer

[4] Cooper, S.B.: Turing’s Titanic Machine? Comm. of the ACM,
March 2012, Vol. 55, No. 3, pp.74-83

[5] Denning, P. J.: What is computation? (opening statement),
Magazine Ubiquity, Volume 2010, Issue October, October 2010,
Article No.1

[6] Deutsch, D.: What is computation? (How) does nature compute?
In: Zenil, H. (Editor): A Computable Universe: Understanding and
Exploring Nature as Computation, World Scientific Publishing
Company, 2012, pp. 551-566

[7] Fortnow, L.: The enduring legacy of the Turing Machine. Comput.
J. 55(7): 830-831 (2012)

[8] Melting points of rocks: http://hyperphysics.phy-
astr.gsu.edu/hbase/geophys/meltrock.html

[9] Peach, F.: Interview with David Deutsch. Philosophy Now. Issue
30 December 2000 / January 2001

[10]Searle, J., 1980, Minds, Brains and Programs, Behavioral and
Brain Sciences, 3: 417–57

[11] Searle, John R. (1997). The Explanation of Cognition. Royal
Institute of Philosophy Supplement 42:103

[12] Searle, J.: The Rediscovery of the Mind. MIT, 270 pp., 1992

[13] Valiant, L.: Probably Approximately Correct: Nature's
Algorithms for Learning and Prospering in a Complex World,
Basic Books, (2013)

[14] van Gelder, T.: What might cognition be, if not computation?
The Journal of Philosophy, Vol. 92, No. 7. (Jul., 1995), 345-381.

[15] Wiedermann, J. and van Leeuwen, J: How we think of computing
today. In: Computability in Europe, Proc. CiE 2008, LNCS 5028,
Springer, 2008, pp. 579-593

[16] Wiedermann, J.: On the road to thinking machines: Insights and
ideas. Proc. CiE 2012, LNCS 7318, Springer, 2012, pp. 733-744

[17] Wiedermann, J. van Leeuwen , J: Rethinking computation. Proc.
6th AISB Symp. on Computing and Philosophy: The Scandal of
Computation - What is Computation?, AISB Convention 2013
(Exeter, UK), AISB, 2013, pp. 6-10

[18] Wikipedia, http://en.wikipedia.org/wiki/Knowledge, 2013

http://en.wikipedia.org/wiki/Knowledge

	Jiří Wiedermann
	1 INTRODUCTION
	When one wants to investigate whether computation is observer-relative, one has to specify the meaning of three key notions of this paper: what is computation, what is an observer, and how do these notions link up.
	At first sight it seems surprising that, after sixty years of living with computers, we still ask what the essence of computation is. For people working with computers and computations all their life, the answer seems clear. All agree that computation...
	The classical view of computation has proved to be a very potent paradigm. It has lead to the development of the theory of computability and computational complexity as we know it today, showing what can and what cannot be computed by the underlying m...
	As a further argument, consider the questions recently posed by Abramsky in [1]: “Why do we compute? What do we compute?” Note that he does not ask “how do we compute?”, leaving the question of the implementation of computational processes aside. Obvi...
	Our answer to these questions is: computation is there in order to create knowledge, and knowledge is what is computed there. Thus, computation is a far more profound notion than it seemed at first. Our answer implies that computation is not an obser...
	In this paper we will study the question what computation is and give support to the view that computation is an observer relative phenomenon. We will do so e.g. by specifying and formalizing, to some extent, the properties that seem to be required fo...
	This paper is a continuation of our earlier paper [17] in which the idea of computation as knowledge generation was presented for the first time. Here we further elaborate our thesis by determining the conditions for a process to be declared to produc...
	Our paper aims to contribute to the further understanding of computation in several ways. First, it leads to a further shift in appreciating the essence of computational processes, by stressing their epistemological aspect. Conditions are stated by wh...
	The paper is organized as follows. In Section 2 we elaborate the idea of computation as a knowledge generation process and introduce the necessary terminology. The main result of Section 2 is the definition of computation, seen as a process that must ...
	2 WHAT IS COMPUTATION
	2.1 Computation as knowledge generation When it comes to considering the possibility that computation might not be an observer-independent phenomenon, one has to abandon the stance that computation is a process intrinsic to physics. Instead of the “wh...
	“Knowledge is a familiarity with someone or something, which can include facts, information, descriptions, skills or behaviour acquired through experience or education. It can refer to the theoretical or practical understanding of a subject. It can be...
	In [17] numerous examples are given. These range from the computations of finite and infinite automata, through the past and recent uses of information technologies (scientific computing, transaction systems, data bases, search engines, etc.) up to co...
	If we accept the given extensional definition, knowledge is not observer-independent. After all, the decision on “familiarity with someone or something” is in the eye of the beholder, especially when this concerns knowledge that is not generally accep...
	Each computation is required to generate knowledge over the domain for which the underlying system was designed or to which they both evolved. Similar to how intelligent behaviour of an embodied robot arises from the interaction between brain, body an...
	The required attributes of computations can take different forms, depending on our knowledge of the underlying knowledge domain and on our ability to formally describe it, including the rules and laws holding in this domain. The above table gives seve...
	2.2 Structure of knowledge In what follows we assume that the knowledge domain that underlies a computation is given in the form of a theory. We will not consider theories in the narrow formal sense as in e.g., logic or mathematics. Rather, we apprehe...
	A possible way of viewing such a highly generalized notion of a theory is to see it as a model of the “world” in which a computation is rooted (cf. [16]). An important characteristic of the notion of theory is that knowledge according to it can be gen...
	From the table above one can see that, from left to right, the domains range from theory-full domains with formal, abstract theories to theory-less domains that admit no formal descriptions for capturing e.g. behavior in common life situations (cf. [1...
	Heterogeneous knowledge characterizes more complex cases. In this case, natural language is an important mediator among theories. Semantics mainly, rather than syntax, is of crucial importance here. Semantics assigns meaning to the individual words an...
	2.3 Defining computation Based on the considerations as given, we will assume that computations are rooted in knowledge domains and that there exists a theory behind each computation. Within this theory the respective computational process generates k...
	Definition: Let T be a theory, let ω be a piece of knowledge serving as the input to a computation, and let κ be a piece of knowledge from T denoting the output of a computation. Let Π be a computational process and let E be an explanation. Then we ...
	 (T, ω) ├ κ, i.e., κ is provable within T from ω, and
	 E is the (causal) explanation that Π generates κ on input ω.
	We say that the 5-tuple C = (T, ω, κ, Π, E) is a computation rooted in theory T which on input ω generates knowledge κ using computational process Π with explanation E. The device or mechanism realizing process Π is called a computer. □
	Note that, under suitable conditions computations can be composed to obtain new computations, as required by the definition. The property of compositionality is an important one to have.
	In the above definition, ω may take any form, e.g. it may be a set of numbers, a query in a formal or natural language, or a statement whose validity we are looking for, etc. The computational process Π acts as a parameter of a computation. Thus, the ...
	The two conditions in the previous definition can be shown to be needed. We will demonstrate this by means of some examples from formal language theory, since computations in this domain are well understood.
	Note that without the second condition it could happen that the computational mechanism Π is “weaker” than theory T. E.g., Π could be some computational process generated by a finite automaton, whereas T might be a theory of recursive functions. Then ...
	A proof that T proves κ on input ω is derived entirely within T and this proof can even be included in κ. This need not be the case with the explanation that Π generates κ on ω. For instance, Π might involve relativistic computations which assume the...
	Finally, observe the natural (and therefore elegant) way in which our approach accommodates the previous efforts to define computation by finding a common procedural platform for all kinds of computations. Using the previous notation, in the majority ...
	3 Computation as an observer-RELATIVE process
	The given definition of computation requires a process to satisfy several conditions in order for it to be a computational process. Who or what can decide whether the conditions from the above definition are satisfied? We shall call any entity designe...
	For the observer to be a realistic party, we have no alternative but to view him as a computational process also. This brings us to model the situation in which a computational process (the observer) “observes” another process with the goal to decide ...
	Following our thesis, we are obliged to use the same definition of computation for both the observer and the process to be observed. That is, for both parties the previous definition must be used. Under such a scenario the decision whether an observed...
	The task of the observer is to verify that C is indeed a computation. In case C is a computation according to our definition, the output (or verdict) of the observer, i.e, the knowledge produced by him, consists of a single bit with value 1. Otherwise...
	 checking whether (T, ω) ├ κ, and
	 checking whether E is the explanation that Π generates κ on input ω.
	Checking the first condition requires the ability to derive a chain of derivations within T starting with ω and ending with κ. In order to check the second condition, the observer must be an “expert” which is able to “judge” the sufficiency of explana...
	In general, there are several possibilities how C can become known to the observer. A straightforward situation occurs when the observer himself acts as a designer of the computation C, since in this case he will be aware of the information needed to ...
	In all cases, the scenarios make clear that our definition of computation is observer-relative. It may well happen (and in practice it does) that an observer sees an observed process as a computational process whereas other observers don’t. For insta...
	We argued that observer relativity is often explained by insufficient precision of argumentation or low competency of the observer. These reasons may not be sufficient to explain observer relativity in all cases, but they are always present in some fo...
	The obiter dictum here is that any computational observer is bound to make `personal choices’ that are not supported by other observers. Namely, we prove that there can be no universal observer O which for each process rooted in theory T decides wheth...
	Proposition. There exists no universal observer whose verdict always agrees with the verdict of every other observer, for each 5-tuple C= (T, ω, κ, Π, E).
	Proof (Sketch). Suppose we had a universal observer O of the claimed quality. We may assume that O is non-trivial, i.e. that processes Q and R exist such that O decides that process Q is computational but that R is non-computational. (If Q or R does n...
	“P observing process X does the following:
	 if O decides that the process of `X observing process X’ is computational, then P continues to behave like R, else
	 if O decides that the process of `X observing process X’ is non-computational, then P continues to behave like Q;”
	Because O is assumed to be universal, this defines a valid process P. But what happens if P observes (a copy of) itself? Then we have P observing process P and
	 if O thinks `P observing process P’ is computational, then by definition the process of P observing process P actually continues to behave like R (which is non-computational), else
	 if O thinks `P observing process P’ is not computational, then the process of P observing process P continues to behave like Q (which is computational like the steps that led up to this).
	This leads to a contradiction. Whatever O's abilities are, O cannot issue a correct verdict from the viewpoint of P. Hence O cannot be universal in the claimed sense. □
	The given proposition shows that computational observers are bound to err on some processes, if we merely require them to be general observers. It is almost a ‘proof’ of the observer-relativity of computation. Nevertheless, the proposition may be coun...
	4 APPLICATIONS
	Our definition of computation (cf. Section 2) requires that for a computational process the following questions are answered: what is the underlying knowledge domain, what knowledge is being computed, and how is it computed? Thus, in order for an obse...
	First of all, note that the proposed definition of computation corresponds very well to the contemporary theory (and hopefully, also to the practice) of programming. The designer of a program must be aware of a theory T and of the required result κ, a...
	Let us verify the strength of the definition, by applying it to a number of types of processes for which it is not obvious, at the first sight, whether they can be seen as computational processes.
	First, let us investigate a notorious example of a “computing rock” (cf. [3]). If somebody claims that a rock can compute (or that it implements any finite automaton, for that matter) then he or she must be able to provide arguments or answers for the...
	The previous example was an example of a measurement. In general, a measurement is a process that for the elements of a theory decides, whether an element at hand satisfies a certain property (temperature in the previous case), or possibly, to what de...
	Experiments are carried out in order to verify or refute the validity of a conjecture or a hypothesis. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a particular factor is manipulated. Experiments vary gre...
	Next, let us inspect another example of a computation involving a rock, described in [11]: “Consider the example ... of a rock falling off a cliff. The rock satisfies the law s=1/2gt2, and that fact is observer independent. But notice, we can treat t...
	Note that arriving at this conclusion has only been possible due to our insight into the entire process. An observer having no idea about the purpose of stop watches and about the laws satisfied by falling bodies, can never come to such a conclusion. ...
	As a third example we consider Searle’s Chinese Room Argument [9]. In this thought experiment Searle considers a person speaking only English, located alone in a room. This person follows English instructions for manipulating strings of Chinese charac...
	First of all we must ask what knowledge domain is behind the computation performed by the room. Obviously, it is the “theory of being Chinese”. This is an epistemic theory in which not only the syntax of the language, but also its semantics must be de...
	The previous example has identified a new intermediate stage between computations (in the classical sense) and intelligence, viz. the ability to produce knowledge. Intuitively, ability to produce knowledge is a prerequisite of intelligence. What ingre...
	Our final example deals with cognition, namely, with the question mused upon by several authors (cf. [14]): what is cognition if not computation? We believe that part of the problem, if not its essence, in answering such a question lies in the definit...
	5. CONCLUSION
	Computation has to be understood as one of the fundamental processes in nature, fundamental in the sense that one needs to understand it in order to understand the universe in a fundamental way. This is the motto of this paper in which “computation” i...
	Computation is an observer-relative phenomenon in many cases. It is inevitably so, unless one severely restricts the reach of the observers and the domains over which observations are made, which would exclude many types of process which we would want...
	Computation is a core notion in computer science. Up to now the view that computation is a process intrinsic to physics has prevailed. We believe that the time has come in which it may be useful – if not necessary - to consider computation as an obser...
	ACKNOWLEDGEMENT The work of the first author was partially supported by RVO 67985807 and the GA CR grant No. P202/10/1333.
	REFERENCES

