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“Creation of knowledge ... now has to be understood 
as one of the fundamental processes in nature; 
fundamental in the sense that one needs to understand 
them in order to understand the universe in a 
fundamental way.” 

D. Deutsch [6] 
 
Abstract.  We elaborate our recent thesis [17] stating that 
computation is a process of knowledge generation. We give 
two conditions for a process to be computational, i.e. to be a 
knowledge generating process. First, the epistemic domain in 
which the computation is carried out must be known, and 
second, there must be evidence that the generated knowledge 
is indeed derivable within the underlying domain of discourse 
by the rules governing the domain and the underlying 
computational mechanism. The fulfillment of these conditions 
may be decided by an observer which, again, is modeled as a 
computational process according to our definition. As a 
consequence, our definition of computation is observer-
relative. The viability of our definition is scrutinized by 
several examples of computations considered widely in the 
literature. Among them, we consider the question whether a 
rock can compute as well as some aspects of Searle’s Chinese 
room thought experiment. The examples illustrate that the 
epistemic approach to computation brings valuable new 
insight into the nature of computation and helps to resolve 
some classical problems related to these examples. 

1 INTRODUCTION 
When one wants to investigate whether computation is 
observer-relative, one has to specify the meaning of three key 
notions of this paper: what is computation, what is an 
observer, and how do these notions link up. 
At first sight it seems surprising that, after sixty years of living 
with computers, we still ask what the essence of computation 
is. For people working with computers and computations all 
their life, the answer seems clear. All agree that computation 
is a process. Then, depending on their point of view, they 
usually require that a computational process satisfies some 
additional properties: it must conform to a formal model of 
computation [2][7], it must be physically realizable [6], or 

must be driven by a program [5], etc. Under such definitions 
of computation, the question boils down to the problem of 
identifying or recognizing whether a given physical gadget 
possesses the required qualities. We call this the classical view 
of computation. This view clearly leads to the conclusion that 
computational properties are physical, i.e. are intrinsic to 
physics, and that as such computation cannot depend on the 
observer, no matter what or who the observer is. 
The classical view of computation has proved to be a very 
potent paradigm. It has lead to the development of the theory 
of computability and computational complexity as we know it 
today, showing what can and what cannot be computed by the 
underlying models of computation and how efficiently this 
can or cannot be done.  All this is carried out in the observer 
independent framework. However, we seem to be reaching the 
limit of this approach.  Namely, when it comes to solving the 
omnipresent problems e.g. related to artificial intelligence, and 
especially to cognition, we do not know at all what the actual 
potential of our computers is. For instance, we have no good 
clue of how to program computers in order to (learn them to) 
think, to be conscious, to acquire, understand and use natural 
languages or to create new knowledge.  All these qualities are 
considered to be observer-relative qualities.  
As a further argument, consider the questions recently posed 
by Abramsky in [1]: “Why do we compute? What do we 
compute?” Note that he does not ask “how do we compute?”, 
leaving the question of the implementation of computational 
processes aside. Obviously, Abramsky aims at an answer from 
some systematic theory holding for “all computations”, i.e. 
holding for all known and so-far unknown computational 
processes. From this point of view Abramsky’s questions are 
not general enough. We are increasingly aware that computing 
is a far more common phenomenon than we believed a few 
decades ago. For example, many processes in so-called natural 
computing (or “computing by nature”) can be viewed 
meaningfully as computational.  Here computation exists 
aside of human activities.  Thus, more general questions arise: 
“Why is there computation?”, and “What is there computed?”  
Our answer to these questions is: computation is there in order 
to create knowledge, and knowledge is what is computed 
there.  Thus, computation is a far more profound notion than it 
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seemed at first. Our answer implies that computation is not an 
observer-independent process. It seems that within computer 
science, little attention was given so far to the possibility that 
the identification of processes as being computational can 
depend on an observer. One of the reasons is the relatively 
restrictive view of computation in computer science. Namely, 
in this field, computations are designed and analysed against 
the backdrop of a concrete computational model. There is no 
room for questions of the sort “does this model indeed 
compute”? For a computer scientist, a computation is what 
any of the accepted computational models does (cf. [7]). He 
takes for granted that whatever mechanism he considers, a 
computational process ensues, by assumption. Interestingly, 
when solving a concrete problem, computer scientists 
inevitably become interested in the goal of such a process. 
This has led to broader views of computation, to include the 
desired computational features and results into the definition 
of computation. Questions about the meaning of computation 
have appeared only recently [1][4][17].  
In this paper we will study the question what computation is 
and give support to the view that computation is an observer 
relative phenomenon. We will do so e.g. by specifying and 
formalizing, to some extent, the properties that seem to be 
required for an observer so he can give a qualified judgment 
about the observed process.  In this context we will view an 
observer as a decision process that, in order to decide, must 
obey the same rules as the processes he observes. This 
scenario allows a more qualified discussion of conditions 
under which an observing process can issue its decision.  
This paper is a continuation of our earlier paper [17] in which 
the idea of computation as knowledge generation was 
presented for the first time. Here we further elaborate our 
thesis by determining the conditions for a process to be 
declared to produce knowledge. To this end, a process is 
considered within the context in which it is used. As a result, a 
definition of computation is obtained which allows the 
identification of computational processes. This definition is 
then applied to the notion of observer itself, modelling him as 
a computational process as well. We specify what an observer 
must know in order to reach its decisions. We argue that the 
paradigm imposes certain limits on the capabilities of 
observers, forcing them to stay within certain frames of 
reference. We test the viability of our definitions on various 
examples of classical and non-classical computation. This 
includes the current programming practice using the standards 
of software engineering, the widely considered question 
whether a rock can compute, the example of an analog 
computer for measuring the height of a cliff, the Chinese room 
thought experiment, and the nature of cognitive computations.   
Our paper aims to contribute to the further understanding of 
computation in several ways. First, it leads to a further shift in 
appreciating the essence of computational processes, by 
stressing their epistemological aspect. Conditions are stated by 
which a process can be qualified as being computational, i.e., 
as a process generating knowledge. A new intermediate stage 
between computations (in the classical sense) and intelligence 
- viz. ability to produce knowledge – is identified. Second, we 
propose a scenario in which an observer is modelled by the 
same means as a computation. The use of our more detailed 
definition of a computation allows us to analyse several cases 

in which an observer has to reach his judgement whether an 
observed process is computational. Third, the potential of our 
approach is demonstrated by applying it to widely known 
“problematic” cases of computation from the philosophical 
literature. Finally, our approach has great methodological 
potential, in allowing us to overcome the narrow view of 
computations as merely being physical processes. The view 
allows us to concentrate on the main meaning of computations 
– viz. knowledge gleaning, accumulation and creation. We 
believe that, as a paradigm, the new view may be equally 
potent for the field of cognitive computation as the classical 
view was for classical computability and complexity theory. 
The paper is organized as follows. In Section 2 we elaborate 
the idea of computation as a knowledge generation process 
and introduce the necessary terminology. The main result of 
Section 2 is the definition of computation, seen as a process 
that must fulfil certain conditions in order to be considered as 
computational. In Section 3 we sketch the scenario of a 
computational agent “observing” another agent at work and 
discuss the possibilities of the observer concerning the ways 
in which he can gain knowledge about the observed process.  
In Section 4 we examine the power of our approach on 
various examples of computations generally investigated in 
the literature. Section 5 contains the conclusions.  
 

2 WHAT IS COMPUTATION  
2.1 Computation as knowledge generation When it comes 
to considering the possibility that computation might not be an 
observer-independent phenomenon, one has to abandon the 
stance that computation is a process intrinsic to physics. 
Instead of the “white box” approach to computational 
processes through the underlying mechanisms that realize 
them, one has to concentrate on the properties that make a 
process computational rather than anything else.  This is the 
approach coined by the authors in [17]. According to this 
approach, the property that distinguishes computational 
processes from any other processes is the fact that the former 
are recognized to explicitly generate knowledge. This being 
said, one must of course state what is meant by “knowledge”. 
The definition of knowledge is an elusive matter attempted by 
generations of philosophers, scientists, lawyers, etc. 
Nevertheless, for our purposes  the following “enumerative” 
definition will do (cf. [18]) 
“Knowledge is a familiarity with someone or something, 
which can include facts, information, descriptions, skills or 
behaviour acquired through experience or education. It can 
refer to the theoretical or practical understanding of a 
subject. It can be implicit (as with practical skill or expertise) 
or explicit (as with the theoretical understanding of a 
subject); it can be more or less formal or systematic.” 
In [17] numerous examples are given. These range from the 
computations of finite and infinite automata, through the past 
and recent uses of information technologies (scientific 
computing, transaction systems, data bases, search engines, 
etc.) up to computations by nature, cognitive computation, and 
non-Turing computations (e.g., computations with real 
numbers and compass-and-ruler constructions). These 
computations can all be seen as knowledge producing 
processes. 
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 Mathematics, logics and 

computer science 
Philosophy and natural 
sciences 

Mind and humanoid cognitive systems 

Domains of 
discourse 
Elements of 
knowledge 
Inference  
rules 
 
Final form of 
knowledge 

Abstract entities 
 
Axioms, definitions                            
 
Deductive system, 
programming languages  
 
Predicates, theorems, 
proofs, solution 

Ideas, empirical data  
 
Facts, observations 
 
Rational thoughts, logics 
 
Statements, theorems, 
hypotheses, explanations, 
natural laws, prediction 

Perception, cognition 
 
Stimuli, multimodal concepts, beliefs, episodic memories 
 
Rules and associations formed by statistical learning 
 
Conceptualization, behaviour, communication, natural language, 
thinking, knowledge about the world formed mostly in a natural 
language and in form of scientific theories 

If we accept the given extensional definition, knowledge is not 
observer-independent. After all, the decision on “familiarity 
with someone or something” is in the eye of the beholder, 
especially when this concerns knowledge that is not generally 
accepted. Therefore computation as a process generating 
knowledge in this sense must be observer-relative. Obviously 
this statement is not yet fully satisfactory: we must state how a 
particular computation is related to the specific knowledge it 
generates. A computational process is not allowed to generate 
completely arbitrary knowledge.  
Each computation is required to generate knowledge over the 
domain for which the underlying system was designed or to 
which they both evolved. Similar to how intelligent behaviour 
of an embodied robot arises from the interaction between 
brain, body and world, so is knowledge generated by 
computation in its interaction with the underlying knowledge 
domain. More formally, there must be a way to verify the 
correspondence between a given computation and a certain 
domain over which the computation generates its output in the 
form of knowledge. For this, every computation will exploit 
some cognisance of the underlying knowledge domain. A 
computation is obliged to only use the facts, statements, rules 
and laws that describe the given knowledge domain and that 
hold in this domain. We say that a computation is rooted in its 
knowledge domain. 
The required attributes of computations can take different 
forms, depending on our knowledge of the underlying 
knowledge domain and on our ability to formally describe it, 
including the rules and laws holding in this domain. The 
above table gives several examples of knowledge domains 
and their different degrees of formalism. The examples show 
what aspects must be taken into account when we want to 
recognize a process as being computational, i.e. as being a 
knowledge generating process. 
2.2 Structure of knowledge In what follows we assume that 
the knowledge domain that underlies a computation is given 
in the form of a theory. We will not consider theories in the 
narrow formal sense as in e.g., logic or mathematics. Rather, 
we apprehend theories as an analytical tool for describing, 
understanding, explaining and answering queries, for 
providing solutions and predictions in various areas of science 
or life, or for the generation or control of behavior. Usually, a 
theory bears the form of facts, sentences, statements, 
principles or linguistic descriptions needed for deriving other 

statements. Nevertheless, other forms of theories are possible 
as well. For instance, a theory can have the form of a semantic 
network, a set of restrictions holding for a computation, it can 
be a map, a scheme, etc. Knowledge produced within the 
scope of such a theory will have to be of a form that fits the 
“language” of the underlying domain. The “new” knowledge 
may be kept in a knowledge base that becomes a part of the 
theory under consideration. Note that there is no need for such 
a theory to be correct or truthful w.r.t. the “real world”. A 
theory can even be based on erroneous, unproven or non-
verified beliefs and facts. For example, consider some theory 
in which various myths produce “knowledge” in the form of 
explanations of various phenomena (such as the weather) due 
to the intervention of divine beings. Within such a theory, 
whatever (knowledge) is derived need not involve truth “w.r.t. 
the correct theory”. Yet whatever is derived within a flawed 
theory is formally considered to be knowledge in that theory 
(and thus truthful within such a theory). 
A possible way of viewing such a highly generalized notion of 
a theory is to see it as a model of the “world” in which a 
computation is rooted (cf. [16]). An important characteristic of 
the notion of theory is that knowledge according to it can be 
generated time and again from the same base facts and 
principles, e.g. by computations that do so. In evolving 
domains, the appropriate theory for the domain will need to 
evolve as well. 
From the table above one can see that, from left to right, the 
domains range from theory-full domains with formal, abstract 
theories to theory-less domains that admit no formal 
descriptions for capturing e.g. behavior in common life 
situations (cf. [13]). At the same time, the table characterizes 
the different levels of formalization, completeness and 
truthfulness of known theories. 
Heterogeneous knowledge characterizes more complex cases. 
In this case, natural language is an important mediator among 
theories. Semantics mainly, rather than syntax, is of crucial 
importance here. Semantics assigns meaning to the individual 
words and this meaning has the form of knowledge (cf. the 
previous enumerative definition of knowledge also includes 
behavior, thus even encompassing embodied semantics). 
Semantics is knowledge and therefore it is to be represented 
by a theory again. From this viewpoint all computations, 
including the computations that generate knowledge based on 
understanding natural language, bear a homogeneous 
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structure. The knowledge framework behind a computation 
will normally be based on cooperating theories. This is 
extremely complex since in principle to each word a theory (in 
our general sense) is attached, controlling the proper use of 
this word. In general, such a theory depends not only on the 
word at hand, but also on the context in which the word is 
being used. In the case of embodied cognitive systems the 
context does not only refer to the grammatical context, but 
also to the entire perceptual situation. All this leads to a 
complex intertwining of the respective theories. In general we 
do not know much about such cooperating theories. 
2.3 Defining computation Based on the considerations as 
given, we will assume that computations are rooted in 
knowledge domains and that there exists a theory behind each 
computation. Within this theory the respective computational 
process generates knowledge expressed by means of this 
theory. Of course, in order for this statement to hold there 
must be evidence (e.g. a proof) that explains that the 
computational process works as expected. The evidence 
should ascertain that the process generates the specified 
knowledge and that this knowledge can be inferred from the 
underlying theory. The latter is the key to the following 
definition. In this definition we assume that the input to a 
computation is part of  both  the underlying domain (and thus 
of the theory) and the initial data of the computational 
process. The notion “piece of knowledge" will denote any 
constant, term or expression which belongs to the theory or 
can be derived using the respective inference rules of the 
given theory. In the following definition we will make use of 
the terminology used in logic, but bear in mind that our notion 
of “theory” is much broader than in logic and also includes 
“informal” theories.  
Definition: Let T be a theory, let ω be a piece of knowledge 
serving as the input to a computation, and  let κ be a piece of 
knowledge from T denoting the output of a computation.  Let 
Π be a computational process and let E be an explanation. 
Then we say that process Π, acting on input ω, generates the 
piece of knowledge κ if and only if the following two 
conditions hold: 

• (T, ω) ├ κ,  i.e., κ is provable within T from ω, and 

• E is the (causal) explanation that Π generates κ on input ω. 
We say that the 5-tuple C = (T, ω, κ, Π, E) is a computation 
rooted in theory T which on input ω generates knowledge κ 
using computational process Π with explanation E. The device 
or mechanism realizing process Π is called a computer. □ 
Note that, under suitable conditions computations can be 
composed to obtain new computations, as required by the 
definition. The property of compositionality is an important 
one to have.  
In the above definition, ω may take any form, e.g. it may be a 
set of numbers, a query in a formal or natural language, or a 
statement whose validity we are looking for, etc. The 
computational process Π acts as a parameter of a computation. 
Thus, the same knowledge may be generated within the same 
theory by different computational processes. A change of 
computational process will result in a different explanation. 
E.g., the realization of a computational process on a Turing 
machine requires a different explanation than a realization of 
this process on a neural net. Whatever Π has to know about T 

must either be encoded in the design of Π and in ω or Π must 
have access to T.  The condition (T, ω) ├  κ implies that T is 
closed with respect to the inference rules of T. This means 
that, once κ is computed, it can be added to T to extend the 
knowledge base of T. This can be used, e.g., in an interactive 
computation where after each interaction, the knowledge base 
is updated by the recently computed piece of knowledge. 
When a computation can modify the underlying theory we 
speak of evolutionary computation. In this way we can model 
potentially infinite, interactive, evolutionary computations (cf. 
[15]). Moreover, the formalism also enables us to define   
universal computations for some domain D which is a subset 
of T, i.e., a computation where the same computation process 
Π is used for generating corresponding pieces of knowledge 
for all ω in D. However, we will not pursue this  in this paper.  
The two conditions in the previous definition can be shown to 
be needed. We will demonstrate this by means of some 
examples from formal language theory, since computations in 
this domain are well understood. 
Note that without the second condition it could happen that 
the computational mechanism Π is “weaker” than theory T. 
E.g., Π could be some computational process generated by a 
finite automaton, whereas T might be a theory of recursive 
functions. Then it could happen that (T,ω) ├ κ but there 
cannot be any E proving that Π generates κ. If Π is “stronger" 
than T, the computation can still work.  For instance, Π could 
be a process generated by a pushdown automaton whereas T 
can be theory of regular expressions. However, it may happen 
that Π is “not compatible” with T. E.g., think of Π being a 
“process” generated by a logarithmic ruler and T the theory of 
addition of natural numbers. Then Π cannot compute the sum 
of two numbers, because the first condition is violated. 
A proof that T proves κ on input ω is derived entirely within T 
and this proof can even be included in κ. This need not be the 
case with the explanation that Π generates κ on ω.  For 
instance, Π might involve relativistic computations which 
assume the laws of relativistic physics. These laws need not 
be a part of T. On the other hand, it can happen that Π makes 
a direct and exclusive use of the means of T (that is, it 
“implements” the operations from T).  For instance, this is the 
case when T is the λ-calculus. Then E is equivalent to (T,ω) ├ 
κ. Interestingly, when considering knowledge generating 
processes in the brain we accept the fact that thinking occurs 
in a theory-less domain T best described in a natural language. 
When attempting to prove that (T,ω) ├  κ, we can reason only 
informally and rely on the fact that the brain (or the mind, for 
that matter) “implements” our mental procedures.  This means 
that the “linguistic proof” of (T,ω) ├ κ   serves at the same 
time as  evidence that the brain indeed generates the required 
knowledge.  
Finally, observe the natural (and therefore elegant) way in 
which our approach accommodates the previous efforts to 
define computation by finding a common procedural platform 
for all kinds of computations. Using the previous notation, in 
the majority of the classical approaches to computation, a 
computation would look like this: C = (Π). No other 
conditions are required from Π. In our approach we have 
found a different common denominator of all computations: 
this is the respective knowledge generation aspect. 
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3 COMPUTATION AS AN OBSERVER-
RELATIVE PROCESS 
The given definition of computation requires a process to 
satisfy several conditions in order for it to be a computational 
process. Who or what can decide whether the conditions from 
the above definition are satisfied? We shall call any entity 
designed to do so an “observer.” How can an observer decide 
whether a process is a computation (i.e., a computational 
process)? How can an observer do it? Does it need a kind of 
`Turing test’ for computational processes? 
For the observer to be a realistic party, we have no alternative 
but to view him as a computational process also. This brings 
us to model the situation in which a computational process 
(the observer) “observes” another process with the goal to 
decide whether the observed process is computational one or 
not. Can an observer achieve this, in a universal sense? (As an 
ultimate case, we will have to face the situation in which an 
observer is asked to test, and presumably affirm, another 
observer for being computational.) 
Following our thesis, we are obliged to use the same 
definition of computation for both the observer and the 
process to be observed. That is, for both parties the previous 
definition must be used. Under such a scenario the decision 
whether an observed process is computational clearly depends 
on the knowledgeability and computational abilities of the 
observer. The observer is assumed to have all information 
required by our definition of computation at its disposal, i.e., 
the entire 5-tuple C = (T, ω, κ, Π, E) of the observed process.  
This 5-tuple serves as the input to the process run by the 
observer. Without it, the observer has a totally different task 
which we will not consider here. 
The task of the observer is to verify that C is indeed a 
computation. In case C is a computation according to our 
definition, the output (or verdict) of the observer, i.e, the 
knowledge produced by him, consists of a single bit with 
value 1. Otherwise, the verdict is 0. Thus, what an observer 
does is: 
 checking whether (T, ω) ├ κ, and  
 checking whether E is the explanation that Π generates κ 

on input ω. 
Checking the first condition requires the ability to derive a 
chain of derivations within T starting with ω and ending with 
κ. In order to check the second condition, the observer must 
be an “expert” which is able to “judge” the sufficiency of 
explanation E. We assume that the expertise of the observer is 
given by a theory T’. The 5-tuple characterizing the 
computation of the observer is then C’ = (T ∪ T’, C, v, Π, E’), 
with v є {0,1} representing the verdict and E’ an explanation 
validating the generation of the respective verdict.  
In general, there are several possibilities how C can become 
known to the observer. A straightforward situation occurs 
when the observer himself acts as a designer of the 
computation C, since in this case he will be aware of the 
information needed to design a computation according to his 
own intentions. This is the most frequently encountered 
situation in programming. A similar situation occurs when the 
information is provided to the observer by a “third”, 
trustworthy person. Next, in case the observer is not the 

designer of a computation, he alone is forced to reconstruct, or 
discover the missing information about this computation. This 
is the situation we find ourselves in when trying to decide 
whether a certain natural process (perhaps arising by 
evolution) is a computational process. In theory-full domains 
it may be possible to “mechanically” verify the correctness of 
a computation, e.g. with the help of theorem provers. 
In all cases, the scenarios make clear that our definition of 
computation is observer-relative. It may well happen (and in 
practice it does) that an observer sees an observed process as a 
computational process whereas other observers don’t.  For 
instance, until the nineteen eighties or so we did not speak 
about “computations by nature” simply because we, in the role 
of observer, were not aware of the computational mechanisms 
that hide in many processes occurring in nature. Vice versa, it 
may also happen that an observer wrongly decides that an 
observed process is computational because his decision may 
be based on incorrect assumptions concerning the underlying 
process. This may especially happen in cases where there is 
no sufficiently formalized and verified epistemic theory in 
which the computation is rooted. In theory-less domains, 
observer relativity follows mainly due to the vagueness of the 
involved reasoning. In most cases the reasoning is sketchy and 
relies on the ability (or the willingness) of the observer to 
complete the missing parts of an argumentation and to fill in 
the “holes” in the respective reasoning. For instance, for a 
theologian an explanation of God’s existence may be fully 
acceptable but it will not be so for an atheist.   
We argued that observer relativity is often explained by 
insufficient precision of argumentation or low competency of 
the observer. These reasons may not be sufficient to explain 
observer relativity in all cases, but they are always present in 
some form. In fact we will argue that there are deeper reasons 
for the phenomenon that make it inevitable, reasons rooted in 
the very nature of computation. 
The obiter dictum here is that any computational observer is 
bound to make `personal choices’ that are not supported by 
other observers. Namely, we prove that there can be no 
universal observer O which for each process rooted in theory 
T decides whether it is a computational process or not and do 
so in agreement with the verdict of all other observers. In 
order to see this we will construct a scenario mimicking the 
argument underlying Rice’s theorem in computability theory. 
In what follows we assume that all processes are rooted in the 
same theory. 
Proposition. There exists no universal observer whose verdict 
always agrees with the verdict of every other observer, for 
each 5-tuple C= (T, ω, κ, Π, E). 
Proof (Sketch). Suppose we had a universal observer O of the 
claimed quality. We may assume that O is non-trivial, i.e. that 
processes Q and R exist such that O decides that process Q is 
computational but that R is non-computational. (If Q or R 
does not exist, then O decides that every process is or is not 
computational, which is not what we expect but maybe this is 
his view of the world. We assume otherwise.) Now design a 
process P as follows. P uses a copy of the computational 
observer process O and works as follows, acting on any 
observed piece of knowledge that represents some process as 
input:      
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“P observing process X does the following:  
 if O decides that the process of `X observing process X’ is 

computational, then P continues to behave like R, else 
 if O decides that the process of  `X observing process X’ is 

non-computational, then P continues to behave like Q;”  
Because O is assumed to be universal, this defines a valid 
process P. But what happens if P observes (a copy of) itself? 
Then we have P observing process P and  
 if O thinks `P observing process P’ is computational, then 

by definition the process of P observing process P actually 
continues to behave like R (which is non-computational), 
else  

 if O thinks `P observing process P’ is not computational, 
then the process of P observing process P continues to 
behave like Q (which is computational like the steps 
that led up to this).  

This leads to a contradiction.  Whatever O's abilities are, O 
cannot issue a correct verdict from the viewpoint of P. Hence 
O cannot be universal in the claimed sense. □ 
The given proposition shows that computational observers are 
bound to err on some processes, if we merely require them to 
be general observers. It is almost a ‘proof’ of the observer-
relativity of computation. Nevertheless, the proposition may 
be countered, by attacking some of the assumptions on which 
the argument is based. Short of abandoning the assumption 
that observers can be computational, the only alternative is to 
accept their limitation or restrict their range of inputs. Are 
observers only useful if they are restricted to being domain-
specific with theories which they can handle? 

4 APPLICATIONS 
Our definition of computation (cf. Section 2) requires that for 
a computational process the following questions are answered: 
what is the underlying knowledge domain, what knowledge is 
being computed, and how is it computed? Thus, in order for 
an observer (“agent”) to qualify a process as computational, 
he must decide whether these questions can be answered 
adequately for the observed process. 
First of all, note that the proposed definition of computation 
corresponds very well to the contemporary theory (and 
hopefully, also to the practice) of programming. The designer 
of a program must be aware of a theory T and of the required 
result κ, and he or she must be convinced that (T,ω) ├ κ. Then 
there is a computational model in which the designer has to 
‘program’ a computational process Π generating the required 
knowledge κ. The designer has to deliver also the evidence E 
that validates the computation, since otherwise one cannot be 
sure that the program does what was assumed. Obviously, our 
definition will work for any reasonably formalized model of 
computation. 
Let us verify the strength of the definition, by applying it to a 
number of types of processes for which it is not obvious, at 
the first sight, whether they can be seen as computational 
processes.  
First, let us investigate a notorious example of a “computing 
rock” (cf. [3]). If somebody claims that a rock can compute 
(or that it implements any finite automaton, for that matter) 
then he or she must be able to provide arguments or answers 

for the following. First, what is the underlying knowledge 
domain (described by T) in which a computation of a rock is 
rooted? Second, what is the input ω to rock’s computation and 
what is the output κ? Third, what is the proof that (T,ω) ├ κ? 
And, last but not least, what is the causal evidence E that the 
rock will produce the expected output κ on a given input ω? 
The claim that a rock possibly computes depends, of course, 
on the imagination of the observer, but stating the scenario of 
such a computation is the hard part of the proof that a rock 
computes. For instance, one can see a rock as an analog 
gadget that “computes” its own melting point. Namely, it is 
known [8] that igneous rocks form through the crystallization 
of magma. There is a considerable range of melting 
temperatures for different compositions of magma. All the 
silicates are molten at about 1200°C and all are solid when 
cooled to about 600°C. Often the silicates are grouped as high, 
medium and low-melting point solids. Thus, a set of different 
silicates can serve as an analog computer for approximately 
determining the temperature. This is an example where the 
underlying knowledge domain would include at least geology 
(or volcanology) and (material) physics. It illustrates a domain 
of discourse which cannot be described formally; yet for the 
experts, the usual way of dealing with knowledge in the 
aforementioned sciences is enough for providing qualified 
arguments supporting the view that a rock can indeed realize 
certain computations.  This makes the computation performed 
by our rock computer observer-relative. 
The previous example was an example of a measurement. In 
general, a measurement is a process that for the elements of a 
theory decides, whether an element at hand satisfies a certain 
property (temperature in the previous case), or possibly, to 
what degree the property is satisfied. Thus, a piece of 
knowledge is assigned to such elements and therefore the 
underlying process is a computational process. More 
generally, the question arises whether experimentation can be 
seen as computation. 
Experiments are carried out in order to verify or refute the 
validity of a conjecture or a hypothesis. Experiments provide 
insight into cause-and-effect by demonstrating what outcome 
occurs when a particular factor is manipulated. Experiments 
vary greatly in their goal and scale, but always rely on 
repeatable procedure and logical analysis of the results. This 
description fits perfectly into our framework of computation. 
The goal of an experiment is to gain knowledge in the domain 
of a scientific theory. An experiment is typically carried out in 
a controlled environment consisting of a physical device, or a 
sample of population of living organisms, with the help of 
observations, etc. In fact, the setup of an experiment 
resembles that of an analog computer. The explanation is an 
important part of any experiment and may even represent the 
conclusion of the experiment. Special kinds of experiment are 
thought experiments (Gedankenexperiments). These 
experiments concern some hypothesis or theory and are 
designed solely for the purpose of thinking through their 
consequences. Thus, the goal of a thought experiment is to 
produce knowledge, and its framework can easily be recast 
into the context of our definition of computation. 
Next, let us inspect another example of a computation 
involving a rock, described in [11]:  “Consider the example ... 
of a rock falling off a cliff. The rock satisfies the law s=1/2gt2, 
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and that fact is observer independent. But notice, we can treat 
the rock as a computer if we like. Suppose we want to compute 
the height of the cliff. We know the rule and we know the 
gravitational constant. All we need is a stop watch. And we 
can then use the rock as simple analog computer to compute 
the height of the cliff.” How does this idea of a computer 
conform to our definition of a computation? First of all, it 
appears that for computing the height of a cliff, a rock alone is 
not enough. In addition to it we need both a stop watch and a 
person who would observe the falling rock, operate the stop 
watch and know how to compute the distance travelled by the 
falling rock given the duration of the fall.  Thus, in this case 
the “computer” consists of a rock and of a person endowed 
with the abilities just described possessing a stop watch. The 
cliff serves as an input. The theory behind the computation 
and the explanation why it works is quite complex if all its 
details should be mentioned. It will include Newtonian 
physics, knowledge of the purpose of a stop watch and its use, 
cognitive theory (for explaining the visual observation ability 
of the observer and his reaction times, his capability to 
perform arithmetic operations), etc. But in principle, all these 
details can be delivered with sufficient plausibility. We 
conclude that, indeed, the whole system as described does 
perform a computation according to our definition. (By the 
way, considering the complexity of the components of this 
analog computer, one could hardly call it “a simple analog 
computer” as Searle does.)  
Note that arriving at this conclusion has only been possible 
due to our insight into the entire process. An observer having 
no idea about the purpose of stop watches and about the laws 
satisfied by falling bodies, can never come to such a 
conclusion. Therefore, this instance of computation is clearly 
observer-relative. 
As a third example we consider Searle’s Chinese Room 
Argument [9]. In this thought experiment Searle considers a 
person speaking only English, located alone in a room. This 
person follows English instructions for manipulating strings of 
Chinese characters in such a way that to a Chinese outside the 
room it appears as if someone in the room understands 
Chinese. Searle claims that the person in the room cannot 
understand what the computation is about: the person cannot 
make the link between the syntactic manipulation of symbols 
and their semantics. We consider a far simpler question: can 
the operator learn that the process he is participating in is a 
computational process (i.e., a process generating knowledge)? 
To decide this we will use our definition of computation. 
First of all we must ask what knowledge domain is behind the 
computation performed by the room. Obviously, it is the 
“theory of being Chinese”. This is an epistemic theory in 
which not only the syntax of the language, but also its 
semantics must be described. As explained in the previous 
section, semantics of a word depends on the context in which 
it is being used. Learning this context might need consultation 
of the “model” of the (Chinese) world (which must be 
available in the form of another theory or theories) and also 
inspection of the past contexts in which the word at hand had 
been uttered in order to recover the history and past 
information. Using similar information resources an answer 
can be generated. Having a theory of being Chinese the next 
step is to decide how the derivations (computations) within 

such a theory will be implemented on the available computer. 
This is an easier task and indeed, it can be implemented (albeit 
in an extremely inefficient way) with the help of a human 
operator manipulating a set of boxes filled with various cards 
inscribed by Chinese characters,  in accordance with the list of 
English instructions.  Having all this information available a 
non-Chinese observer can verify that the conditions from the 
definition of computation are met by the process in the room. 
By the way, this observer cannot certify that the room “speaks 
and understands Chinese” – the observer can only certify that 
what the room does agrees with the information about the 
process given to him.  Whether the behavior produced by the 
room corresponds to the behaviour of real Chinese can only be 
certified by “real Chinese”.1 Only then one can claim that the 
room behaves as if it understood Chinese.  
In general, no computation can understand what it is 
computing unless it is designed so. That means that in the 
computational mechanisms it must be incorporated how the 
desired understanding is provided. In the case of the Chinese 
room, this has been ensured by rooting the computation in the 
“theory of being Chinese” and the respective world model. 
This is a necessary condition for the room, as a whole, to be 
able to explain its activities.  From our considerations it is 
obvious that no part of the room following blindly the 
instructions can be endowed by understanding since no part of 
the room on a Chinese input produces Chinese output 
corresponding to knowledge rooted in the “theory of being 
Chinese”. Hence, no uninitiated non-Chinese operator, being a 
part of the room, manipulating the cards inside the room can 
understand what the conversation is about. Searle is right. But 
behold: what if the observer, with all his knowledge required 
by our definition about the underlying computation, would 
take the role of the operator inside the room? Would he 
“understand” then? Well, no. This is because the observer-
operator is not rooted in the same theory (namely in the theory 
of being Chinese) as the underlying computation is. What he 
can only do is to verify that the process he is participating in 
proceeds correctly, as described in his background papers. 
That is, he can certify that the room generates knowledge – it 
performs a computation, but he cannot state anything more. 
Stated otherwise, the observer cannot tell whether the object 
inside the room makes the link between the “syntax” of the 
generated knowledge and the “semantics” of it, which seems 
exactly what Searle seems to claim, but he does it without 
ascribing another quality to the process inside the room. 
The previous example has identified a new intermediate stage 
between computations (in the classical sense) and intelligence, 
viz. the ability to produce knowledge. Intuitively, ability to 
produce knowledge is a prerequisite of intelligence. What 
ingredients make intelligence stronger than computations, in 
our sense? 
Our final example deals with cognition, namely, with the 
question mused upon by several authors (cf. [14]): what is 
cognition if not computation? We believe that part of the 
problem, if not its essence, in answering such a question lies 

                                                 
1 This situation reminds of the recent episode with President Obama’s 
fake sign language interpreter at the occasion of N. Mandela’s funeral, 
where the non-deaf people believed that the interpreter was correctly 
translating Obama’s speech (December 2013). 



8 
 

in the definition of computation considered by the respective 
authors. Namely, if one sees a computation “classically”, as 
some information process modeled by some machine (e.g. by 
a Watt governor rather than a Turing machine, as Van Gelder 
in [14] is proposing), i.e. as a process “intrinsic to physics”, 
then one immediately loses the main ingredient of cognition, 
namely its observer dependency (or rather, its “self-
dependency”, since in many cases a cognitive system can be 
seen as an observer viewing itself). It seems beyond any doubt 
that the main purpose of cognition is to gain knowledge, and 
that the implementation of this process is immaterial. This is 
in full agreement with our thesis that computation is a 
knowledge generation process. Under this definition of 
computation, cognition is a computational process, or 
computation, indeed. 

5. CONCLUSION 
Computation has to be understood as one of the fundamental 
processes in nature, fundamental in the sense that one needs to 
understand it in order to understand the universe in a 
fundamental way. This is the motto of this paper in which 
“computation” is substituted by the “creation of knowledge”.  
This is perfectly in order since according to our thesis 
defended in this paper, “computation is the generation of 
knowledge”.  
Computation is an observer-relative phenomenon in many 
cases. It is inevitably so, unless one severely restricts the reach 
of the observers and the domains over which observations are 
made, which would exclude many types of process which we 
would want to call computational. It has consequences also for 
a possible `Turing test’ for computations. The original 
question behind the Turing test was whether a human observer 
can distinguish a man from a machine in a conversation, 
challenging whether the ‘machine’ can be intelligent. 
Famously, up to now the answer has been positive, i.e. no 
computer appears to be at par with humans in the Turing test. 
 Let us consider a simpler question: can we distinguish a man 
from a machine producing knowledge (i.e., according to our 
definition, a computation)? It appears that there is no 
straightforward answer favouring humans. For example, 
search engines can produce knowledge in many domains in a 
way with which no human can compete.  Also, IBM’s Watson 
offers a compelling example of computational ability that 
triumphs over the ability of humans to demonstrate knowledge 
in a large theory-less domain.   
Computation is a core notion in computer science. Up to now 
the view that computation is a process intrinsic to physics has 
prevailed. We believe that the time has come in which it may 
be useful – if not necessary - to consider computation as an 
observer-relative process. This is because we are increasingly 
facing problems where, due to the nature of the problems to be 
solved, such a framework is required.  This is especially the 
case of computations related to AGI (artificial general 
intelligence) which are all rooted in theory-less observer-
dependent domains. Changing our thinking of computations 
towards the view as knowledge generating processes will help 
in the further development of intelligent information 
technologies.     
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