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Abstract.  This paper develops models for single recurrent 
neural circuits, known as autapses, where the axon of a neuron 
forms synapses onto its own dendrites. Once thought to be 
curiosities or artefacts of growing cells in vitro, autapses play a 
key role in the operation of Central Pattern Generators and the 
cortex where they may function as a simple short-term memory. 
Biologically plausible, idealized models of the autapse are able 
to produce arrhythmic, sustained behaviours in ‘neural vehicles’. 
Detailed models are developed to show how excitatory autapses 
may support both bistability and monostability. 

1 INTRODUCTION 
The motivation for this work is the development of simple neural 
circuits for robotic applications. They are biologically inspired, 
but typically hand-engineered; neuro-engineering rather than 
neurophysiology. The term Neural Vehicles [9] is inspired by 
Braitenberg's Vehicles [3]. They are vehicles for understanding 
neural networks in context rather than as stand-alone circuits. 
They may be physical hardware robots, software robots, or more 
abstract vehicles purely for thought experiments. The author uses 
neural vehicles to teach the principles of artificial neural 
networks applied to robotics, where they add value as an 
intuition primer. 
 
Even simple circuits stretch the computational metaphor to its 
limits, where the aim is not so much as to compute but to 
control. From the viewpoint of cybernetics, control is as much a 
first-class citizen as the communication of information. The 
contention is that robots can teach us a lot about how machines 
interact with the world around them, both physically and 
symbolically.  

2 BACKGROUND 
Aplysia is a genus of large herbivorous sea-slugs found in 
tropical waters. They are a favourite of neuroscientists because 
of their small brain, containing just 20,000 neurons, or 
thereabouts. The Aplysia’s mouth includes a tongue-like rasper 
(radula) and a cartilaginous structure (odontophore) that enables 
the mouth to open and close. This mouth structure can be moved 
in a forward and backward motion (protraction and retraction) 
that enables it to grasp and tear the plants it is grazing.  
 
Neural circuits that are involved in the generation of motor 
programs are referred to as Central Pattern Generators (CPGs). 
The motor programs for protraction and retraction are generated 
by the Aplysia Buccal ganglia; a Central Pattern Generator for 
feeding (ingestion and egestion) [16]. The CPG includes a sub-

group responsible for controlling grasper protraction. This group 
includes neuron B63 and motor neurons B31/B32 that can be 
triggered by a brief depolarization of B63. Once triggered, their 
activity is self-sustaining [12]. They are only re-polarized 
(switched off) by the extrinsic inhibitory action of neuron B64 
from an opposing CPG sub-group controlling grasper retraction. 
The autapse is key to understanding how this persistent electrical 
and muscular activity may continue long after the initial stimulus 
has disappeared [1].  

3 METHOD 
The goal of this work is to describe how simple autaptic circuits 
can produce the kind of behaviour seen in the Aplysia, and then 
re-apply this knowledge to the development of simple neural 
vehicles. 
 
Using standard models of artificial neural networks, and a few 
carefully selected weights and bias thresholds, it is fairly 
straightforward to build simple neural circuits that represent 
combinatorial logic; the operations of conjunction, disjunction 
and negation. However, the most interesting circuits, and the 
vast majority of the brain, form recurrent circuits whose 
behaviour is more difficult to discern. By analogy with 
electronics circuits we should expect to find circuits with a 
temporal dimension including differentiators, integrators, 
oscillators, and bistable & monostable switches. Indeed, the 
protraction behaviour of the Aplysia can be understood as the 
action of a bistable switch [4][8]. 
 
3.1 Recurrent Inhibitory Circuits 
One type of Central Pattern Generator that has received great 
attention is comprised of a small number of mutually inhibitory 
neurons [11]. These can be made to oscillate, with neural activity 
switching back and forth between the neurons like an oscillating 
spring. A well-known example of this, the Matsuoka oscillator 
[10], is normally presented as a pair of neurons, each with an 
inhibitory connection to the other. There is an external, or tonic, 
input that adds energy to the system and after a brief period of 
time it settles down into a natural rhythm. As one neuron 
becomes active it suppresses the other. After a while it adapts or 
fatigues and its twin is then able to take over. The difference 
between the outputs of the two neurons forms a reasonable 
approximation of a sine wave. This oscillator circuit can be used 
to control rhythmic behaviour in robots from the scanning of a 
head, through a swinging bipedal gait, to the multi-legged gait of 
insect inspired robots, simply by adding one neuron for each 
additional leg. 
 



3.2 Recurrent Excitatory Circuits and the Autapse 
However, the space of mutually excitatory neurons is much less 
well understood and explored. Once thought to be a rarity [2], 
most cortical connections are local and excitatory. Eighty-five 
percent of neo-cortical synapses are now thought to be excitatory 
[5]. The term autapse was first proposed by Van der Loos and 
Glaser [17]. It is a recurrent connection from a single neuron 
onto itself, a synaptic connection from its axon onto its own 
dendritic tree [7]. The study of autapses has traditionally been 
complicated by the fact that many cells grown in-vitro will 
readily form autapses that they would not form in vivo. 
However, numerous studies have confirmed that the brain does 
grow significant numbers of autapses in vivo. In a quantitative 
study of the rabbit neocortex, roughly 50% of pyramidal cells 
were found to contain autapses. More recent studies [15] indicate 
that the percentage could be even higher [2].  
  
These results may have been overlooked because a simple linear 
analysis of positive feedback predicts useless runaway 
behaviours. Like a microphone brought too close to the speaker, 
a system with positive gain is unstable. However, even in this 
analogy, the system is not perfectly linear and will saturate at the 
limits of the amplifier. Neurons are no different; their activation 
function determines how the input signal, summed within the 
dendritic tree, is transformed and output. The use of a non-linear 
saturating activation function completely transforms the 
dynamics of the positive feedback loop from an impossible 
infinity into a useful switch. 
 
The concept of the autapse may also serve as a useful 
simplification to describe larger cell populations. A population 
of identical neurons with excitatory connection to each other can 
be simplified to a circuit containing a single neuron with an 
autapse onto itself [5]. A key feature of such a circuit is the 
amount of system gain and whether it converges, or diverges 
until it reaches saturation. 

4 RESULTS 
4.1 Bistability 
The first neuron model comprises a single state variable, x, 
representing the membrane potential of the neuron; the potential 
difference between the interior and exterior of the neuron. This 
determines the firing of the neuron, denoted here by the variable, 
y. Rather than representing individual spikes, the activation is 
averaged over time, such that the output, y, represents the firing 
rate. 
 
In a simple feed-forward network, the neuron sums inputs 
arriving simultaneously and will fire at a level that is some 
function of this input. With a continuous model of neural 
behaviour, expressed as a differential equation, it is possible to 
capture the temporal summation of inputs. Neurons perform not 
only spatial summation of all the inputs arriving along their 
dendrites, but also temporal integration of inputs that arrive 
within a short time window [4]. The time span over which this 
integration can occur is on the order of a few milliseconds (as 
determined by the membrane time constant). By itself, this 
mechanism isn't sufficient for integration over longer intervals 
[6].  Integration over longer timescales can be modelled by a 
self-excitatory autapse. In this case positive feedback is used to 

carry forward output from the previous cycle to be summed into 
the next. 
 
A biologically plausible neural model will only perform this 
integration over the timescale of the action potential, or neural 
spiking. Integration over longer timescales needs a different 
approach and may be achieved with autaptic circuits [6]. Using 
positive recurrence, the output reverberates back to the input via 
the autapse such that when the input stimulus is withdrawn, the 
neuron continues to be active. Using these ideas, Seung et al [13] 
describe an autaptic analog memory. This uses positive feedback 
to create a continuously graded memory but has the drawback 
that the model needs to be finely tuned so that it is neither 
converging nor diverging, but is linear and a perfect integrator. 
If the gain of the system is not exactly 1 then the signal will 
either leak back to 0, or it will run away to its saturation point.  
 
The bistable model presented here sacrifices analogue fidelity 
for digital stability. It uses the autapse to perform temporal 
integration but aims to provide a simple two-state memory rather 
than one that is continuously graded. The existence of these 
bistable switches has been observed in the Aplysia, by studying 
pairs of mutually excitatory abdominal ganglion neurons in vitro 
[8]. As noted earlier, this small population (of two) may be 
described as an idealized autapse on a single neuron. This 
research also emphasizes the extrinsic nature of the inhibitory 
reset, as opposed to the intrinsic nature of the bistability. 
 
The bistable model presented here does not need to be finely 
tuned and is tolerant of noise. To achieve this goal, a non-linear 
activation function is employed. The Heaviside step function is a 
discontinuous function that is 0 for negative numbers, and 1 for 
positive numbers. This is a simple 1-bit decision unit that, used 
in conjunction with a bias value, can test if an input exceeds a 
given threshold, returning a binary 0 or 1. These Threshold 
Logic Units (TLUs) are of the style used in McCulloch-Pitts 
neurons.  

 
Figure 1 - Heaviside step function used to switch the bistable 

autapse into one of two states 

The averaged firing rate, y, is defined in terms of the activation 
function, g. For simplicity, a simple threshold function is used 
such that when the potential, x, exceeds the bias the neuron fires. 
The bias is typically set to a value of 0.5. 
 
In the bistable model shown in Figure 2, the stimulus, s, may be 
positive or negative, shown in the diagram as either an excitatory 
or inhibitory input. This stimulus, s, together with the autapse 
carrying the output y, form a weighted sum that drives the 
potential, x, up or down. A timing constant, tr, controls the rate 
at which the neuron responds to input and the window over 
which it performs temporal integration. 



 
Figure 2 - Bistable autapse defined as an ordinary 

differential equation. Connections terminating in a bar 
denote excitatory synapses; filled circles denote inhibition 

The autapse is stable in the 'off' position, but when a positive 
input pushes the potential above the bias threshold, positive 
feedback amplifies the signal to the point of saturation at which 
the neuron is fully 'on’. To switch the autapse off again, a 
negative input is required to push the potential below the 
threshold at which point it will rapidly decay to 0 and the neuron 
becomes quiescent in the absence of any further input.  
 
The circuit is not sensitive to the exact nature of the threshold 
function; a sigmoid function may be substituted for the step 
function, and works over a wide range of  ‘slope’ settings. The 
circuit is also quite resistant to noise. The simulation of the 
bistable behaviour in Figure 3 demonstrates how an initial 
setting of x=0.4 at time t=0 is quickly dampened back to zero. 
The activation is governed by the saturating linear function that 
limits the output to the range [0,1]. A system with positive gain 
and a linear activation function would rapidly amplify small 
fluctuations through feedback, whereas the non-linear activation 
function drives the activation level into one of two states. The set 
and reset stimuli appear as short +/- unit pulses. The activation is 
self-sustaining because of the excitatory synapse onto itself. The 
activation level can be seen to be climbing during the pulse and 
only when it exceeds the bias does the activation level switch 
‘on’. An inhibitory stimulus is required to reset the autapse back 
to the ‘off’ state. 

 
Figure 3 - Plot of the bistable autapse showing the rise in 

potential in response to the initial positive stimulus, followed 
by a self-sustaining activation  

The graph illustrated in Figure 3 is generated by the bistable 
autapse model captured as a Mathematica model in Fragment 1. 

This fragment defines the Heaviside step function, g, and the 
stimulus, s, as a function of time and producing a +/- unit pulse 
with a given period and duty cycle. Time constants are defined; 
the time averaging constant, tr=5; the autapse weight, a=1; and 
threshold bias = 0.5. The simulation is defined to run for 200 
seconds.  
 
The activation function is substituted into the differential 
equation for the neuron, which is then solved for x with an initial 
value of 0.4 (demonstrating the quashing of insignificant values 
below the threshold). The results are plotted as in Figure 3, 
showing the stimulus s, potential x, and activation y. 
 
tr = 5; a = 1; bias = 0.5;  
tmax = 200; period = 100; duty = 0.05;  
 
g[n_] := If[n <= 0, 0, 1];  
 
s[t_] := UnitBox[Mod[(t-25)/period,1]/(2*duty)]      
- UnitBox[Mod[(t-75)/period,1]/(2*duty)]; 
  
system = NDSolve[{{ 
    x'[t] == (s[t] +a*y[t] -x[t])/tr}  
 /. y[t_] -> g[x[t] - bias],  
    x[0] == 0.4},  
x, {t,0,tmax}];  
 
Plot[Evaluate[ 
{s[t], x[t], g[x[t]-bias]} /. system],  
{t, 0, tmax},    
PlotRange -> {{0, tmax}, {-1.5, 1.5}},   
PlotLegends ->  
 {"stimulus", "potential", "activation"}, 
PlotStyle -> Thick] 

Fragment 1 - Bistable autapse modeled in Mathematica 

This example begs the question as to how to flip the bistable 
circuit back into the 'off' position. This is treated as an extrinsic 
inhibitory input. As with the Aplysia, the inhibitory input may 
come from another CPG. 
 
4.2 Monostability 
A further possibility is that there are neural correlates for 
monostable circuits that are able to reset themselves after a set 
interval. One plausible mechanism for interval timing is the use 
of temporal integration in which the firing rate of a neuron 
gradually increases over time. The end of an interval is marked 
by the point at which a given threshold is reached [14]. An 
alternative, single neuron autaptic model that uses signal 
ramping to reset the circuit can be achieved using internal 
adaptation to the input. This would allow recurrent excitatory 
circuits to relax into the 'off' state after a given period of time. 
The connection strength of the recurrent connection could 
change, or the threshold could change through adaptation [8].  
 
There is a strong relationship between bistable switches and 
oscillators (multivibrators), so it should not be surprising that the 
same techniques can be used to build a monostable neuron. The 
Matsuoka oscillator is typically constructed from pairs of 
mutually inhibitory neurons. The interval, or period, of the 
oscillation is defined by intrinsic neural adaptation to the current 
input. Adaptation occurs over a longer time scale than activation. 
Just as activation is key to oscillatory behaviour in mutually 
inhibitory circuits, it may also serve to terminate a period of 



persistent activity. Translating this into the design of a single 
neural autapse, this intrinsic adaptation is used to enable the 
neuron to become adapted to its current state. Furthermore, the 
rate of this adaptation allows control over the period of time for 
which the neuron occupies this unstable state. The neural 
monostable can be thought of as a half-multivibrator. 
 
In the presence of positive recurrence the output must be 
governed to prevent runaway feedback by setting an upper 
saturation point. Also, if x goes negative we wish to prevent the 
autapse from becoming inhibitory. In this case, the activation 
function g(x) is defined as a saturating linear function of the 
potential x, limiting the activation to the range [0,1].  
 

 

Figure 4 - Saturating linear activation function over the 
averaged membrane potential, x 

This model extends the basic bistable by adding an additional 
state variable, v, to represent the current level of adaptation. This 
varies as a function of the activation, y. This is fed back into the 
weighted sum for x, via weight a. The rate of adaptation and the 
resulting interval during which the neuron remains in the 
unstable state, is determined by ta. The inhibitory reset signal is 
now intrinsic to the neuron, thus removing the need for an 
additional source of control. 

 
Figure 5 - Monostable autapse defined as a small system of 
differential equations. Intrinsic adaptation, v, is shown as 

self-inhibition weighted by b 

The graph in Figure 6 shows the output of a single monostable 
autapse with adaptation. A stimulus, s, is required to switch the 
autapse into the unstable 'on' state. The membrane potential 
rises, activating the neuron. The activation is self-reinforcing and 
is sustained even when the stimulus is removed. The activation 
level remains at the saturation level until the intrinsic adaptation 
is great enough to inhibit it. It returns to the quiescent ‘off’ state 
after an interval determined by the rate of adaptation, ta. The 
time constant for summation of the inputs, tr=3; the time 
constant for adaptation is an order of magnitude greater and 
therefore slower, ta=20; The bias is not required so, bias=0; The 
relative weighting of the excitatory autapse, a=1.7, versus 
adaptation, b=1, gives more weight to the recurrent input. The 
simulation is defined to run for 200 seconds. The plot for the 
activation level is easily recognized by its flat top, at the point 
where it reaches saturation. Within the range [0,1] it follows the 
same course as the membrane potential. 

 

Figure 6 - Plot of the monostable autapse showing the 
response to a momentary stimulus. The inhibitory effect of 

adaptation returns the circuit to the stable ‘off’ state 

The Mathematica model in Fragment 2 produces the graph seen 
in Figure 6. It solves the system of two differential equations for 
the state variables, x and v, after substituting the definition of y. 
It defines g as a saturating linear activation function with range 
[0,1], and defines the stimulus, s, as a function of time producing 
a positive unit pulse of a given period and duty cycle. It plots the 
stimulus s, potential x, activation y, and weighted adaptation, v. 
 
ta = 20; tr = 3; bias = 0; a = 1.7; b = 1;  
tmax = 200; period = 100; duty = 0.05  
 
g[n_]:= Which[n<0, 0, n>1, 1, True, n];  
s[t_]:= UnitBox[Mod[(t-25)/period, 1]/(2*duty)]; 
  
system = NDSolve[{{        
    x'[t] == (s[t] -b*v[t] +a*y[t] -x[t])/tr,            
    v'[t] == (y[t] -v[t])/ta}       
 /. y[t_] -> g[x[t] - bias],      
    x[0] == 0.0,  
    v[0] == 0.1},  
{x,v}, {t,0,tmax}];  
 
Plot[Evaluate[ 
{s[t], x[t], g[x[t]-bias], b*v[t]} /. system],  
{t, 0, tmax},    
PlotRange -> {{0, tmax}, {-0.6, 2}},   
PlotLegends -> {"stimulus", "potential", 
"activation", "adaptation"},  
PlotStyle -> Thick] 

Fragment 2 - Autaptic monostable modeled in Mathematica 



5 DISCUSSION 
In the context of a neural vehicle, the autaptic monostable may 
be used to realize simple obstacle avoidance behaviour. When a 
sensor at the front of the vehicle is stimulated, the monostable is 
triggered, throwing the vehicle into reverse. Like Aplysia, this 
behaviour must be sustained for a relatively long period of time 
(a few seconds) to be effective. 
 
The system of differential equations defining each neuron is 
solved on-board the robot using (forward) Euler’s method. Given 
initial values for the state variables x and v (typically 0). The 
step-size is tied to the system clock so the equations are solved 
in real-time. 

 
Figure 7 - The robot chassis and Arduino based controller 
serving as a platform for experiments in neural vehicles. 

Note the front mounted ‘whiskers’ 

5.1 Reactive Motor Programs 
As discussed earlier, the effectiveness of a neural circuit is best 
analysed in the context of the system that it controls. To provide 
a flavour of this approach consider the simple mobile robot in 
Figure 7. It has two front mounted whiskers that produce a brief 
pulse when struck. The duration of this pulse is not long enough 
by itself to drive obstacle avoidance behaviour. However, as we 
have seen, this stimulus is sufficient to trigger a monostable or 
bistable switch. It is desirable that the obstacle avoidance 
behaviour is self-terminating after a short duration so the 
monostable autapse is the appropriate choice of component. 
 
Using the diagrammatic techniques of Braitenberg [3], a simple 
neural vehicle based on a pair of monostable autapses is 
illustrated in Figure 8. This style of vehicle uses continuous 
valued neurons and works with values in the range [-1, +1]. 
Inhibitory inputs are represented by negative values, and 
excitatory inputs by positive values. Sensors like the whiskers 
generate a positive stimulus, while the motors either side of the 
vehicle can be driven forwards or backwards depending on 
whether the weighted sum of inputs to the motor (including a 
bias value, shown) is positive or negative. The autaptic 
monostable is represented by the circle bearing the monostable 
symbol (⎍). 

 

 

Figure 8 - Neural Vehicle with a pair of monostable autapses 
implementing obstacle avoidance behaviour 

When both monostables are in their stable ‘off’ mode, neither 
motor is inhibited and the (+0.5) bias is sufficient to drive the 
vehicle forwards. When one of the whiskers is stimulated, the 
monostable is switched ‘on’. Both motors are inhibited causing 
the vehicle to reverse. However, the relative weighting causes 
the motor on the opposite side to run backwards faster, effecting 
a turn. When the monostable relaxes back to the stable state, the 
vehicle continues forwards along a straight path, hopefully 
avoiding the obstacle that triggered the manoeuvre in the first 
place. Should both whiskers be stimulated, the inhibitory effect 
on both motors is the same, saturating at -1, causing the vehicle 
to reverse in a straight line. 
 
5.2 Learning 
William Grey Walter, considered by many to be the father of 
autonomous robotics, saw simple memory devices as a necessary 
precursor of conditioned learning [18]. In developing his CORA 
circuit (Conditioned Reflex Analogue) Walter noted the 
requirement for a short-term memory that could provide a 
temporal extension of a stimulus. In Pavlov’s classic experiments 
on the conditioned reflex, the neutral stimulus would be a bell 
that rings, either simultaneously with, or immediately preceding 
the specific signal, the presentation of food. For any kind of 
learning mechanism to associate the two events separated in 
time, some kind of short-term memory must be present. Once the 
(extended) neutral and specific stimuli are presented together, 
their degree of coincidence can be recorded. The monostable 
autapse provides a biologically plausible mechanism for 
implementing this stimulus extension.  
 
In future work I hope to be able to demonstrate some of the 
remarkable insights found in Walter’s ground-breaking research 
in the context of neural vehicles. Deconstructing the Machina 
doclis. 



6 CONCLUSION 
Inspired by the biology of Aplysia, this paper has developed 
simple recurrent neural circuits, autapses, to drive arrhythmic, 
sustained activities in neural vehicles. Plausible neural models 
were developed to show how excitatory autapses can support 
both bistability and monostability (with adaptation). This 
persistent neural excitation can be understood as a primitive 
short-term memory that can support simple reactive motor 
programs or more sophisticated learning. 
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