
Recursive Least Squares for Echo State Network Damage
Compensation

Daniel Dean
d.p.dean@pgr.reading.ac.uk

Prof. Slawomir Nasuto
s.j.nasuto@reading.ac.uk

Prof. Kevin Warwick
k.warwick@reading.ac.uk

School of Systems Engineering, University Of Reading, Reading, UK

Abstract. In this paper an Echo State Network (ESN) with a Recursive-
Least-Square (RLS) output layer is developed to demonstrate RLSs potential
for compensating for damage to the ESNs pool. The pool of an ESN is the
Recurrent Neural Network (RNN) from which it draws its dynamics, and is
normally static after the training of the ESN’s output layer. RLS is used to
compensate for pool damage, so that individual sub-pools of the pool can
be distributed across a multi-agent system (e.g robots in a Unmanned Aerial
Vehicle (UAV) swarm), which can dynamically join or drop connections.
This is useful in multi-agent systems as it allows a sharing of computational
resources across a swarm. The main focus of this investigation was the
forgetting parameter of the RLS algorithm. We conclude here that the
classical best range of this parameter is not ideal for this system, which
requires a much lower value. The computation time required for RLS is
also briefly investigated, to demonstrate an important consideration in the
use of RLS in this situation: that of RLS being relatively slow.

1 INTRODUCTION
In the field of multi-agent systems the problem of combining
computational resources in a system of distributed processors
(e.g. a Unmanned Aerial Vehicle (UAV) swarm) is a complicated
one. Addressing this problem, however, is important for the most
efficient use of such distributed systems. A method of combining
and sharing computational resources over many processing units
is to distribute an Artificial Neural Network (ANN) across the
processing units. This allows a larger (in number of weights
and neurons) neural network than could be present on a single
processing unit, which typically allows more complicated problems
to be solved, or problems to be solved to a higher accuracy. Another
problem to address is that the world is inherently history-dependant,
that is, in majority of real-world interactions the history of the
interaction is just as important as the instantaneous information
available.
In this paper a novel Distributed Neural Network (DNN) is pre-
sented using a form of Recurrent Neural Networks (RNNs) known
as an Echo State Network (ESN). An ESN is a technique which
uses a normally static pool consisting of an RNN and is useful
compared to RNNs because of its far simpler training. The use
of a RNN allows for the input history to be natively processed
(rather than with, say, a feed-forward network which requires extra
structures in the form of delayed feedback [1]). An ESN is used as
it is a computationally cheap [2] form of an RNN. An algorithm,
specifically the Recursive-Least-Square (RLS) algorithm, is used to
allow an ESN to gracefully deal with a changing network structure
so as to compensate for network damage, for example in a UAV
swarm when one agent (a sub-pool) cannot communicate. The
major advantages of this form of multi-agent resource sharing are

the ability to natively handle time series inputs and being able
to compute an arbitrarily high number of outputs from a single
network, concurrently [3].
In previous literature hierarchies of ESN pools (which would
naturally lend themselves to distribution) have been described [4].
These hierarchies would perform poorly in swarms of processing
units due to their inability to deal with changing topologies.
Furthermore these hierarchies acted as no more than large networks
of RNNs, meaning that the entire hierarchy is analogous to a single
ESN (with a specific inter-pool network structure). The results this
paper presents (which are for single pools) can therefore be easily
applied to a dynamic hierarchy of ESNs due to this analogy.
A distributed ESN would function as a platform for multi-agent
systems to share resources, specifically to pool computational
power for ’difficult’ problems, e.g.. ones requiring either large input
dimensionality, history-dependant input, unknown (learned) input-
output transform etc. Since a hierarchy of ESNs can be treated as a
single pool, this means that the work presented here can be used in
such a way for multi-agent systems. For an example imagine group
of communicating, co-operating agents, each processing a single
ESN, one finds a ’difficult’ problem, with this proposed system
it would simply combine its ESN with nearby agents to increase
accuracy vs. a non-neural network approach.
The novel contribution this paper makes is an empirical investiga-
tion into the use of the RLS algorithm in compensating for damage
to an ESN pool, with the analogy that a single pool can be treated
as a hierarchical ESN, and damage represents network members
(sub-pools) no longer processing.
This paper first gives a brief introduction to the two major concepts
at the heart of this research, ESNs and the RLS algorithm in Section
II. This is followed by an overview of the experiments undertaken
in Section III, with the results presented in Section IV. Finally the
conclusions of this paper are presented in Section V.

2 BACKGROUND
2.1. ESN
An Echo State Network (ESN) is a form of a RNN (i.e. a neural
network with one or more recurrent connections) which uses a fixed
RNN as a pool, which is perturbed by an input layer, and is sampled
by an output layer, see Figure 1. ESNs, and several other similar
systems, are collected under the umbrella of Reservoir Computing
(RC) [5]. Typically all inter layer and intra layer weights are real.
The input layer, which is one neuron per dimension of the input
data, is typically used to scale incoming data, as the range of inputs



Figure 1: An Echo State Network

can have a significant effect on the performance. The pool consists
of a set of neurons arranged in a weighted RNN. The output layer
consists of a set of from-pool weights, which are the only section of
the system which is trained [3]. Indeed, one of the major reasons
for using an ESN is that one can have the time series handling
of RNNs, with the simplicity of linear regression training, as the
output becomes the combination of linear regression between all
pool units and a target output.
A Typical ESN is defined by three matrices and one function, as
well as the number of neurons in each layer: nin, n & nout in
the input layer, pool and output layer respectively. The matrices
are as follows: the input weights matrix, Win ∈ Rn×nin , the pool
weights matrix, W ∈ Rn×n and the output weights matrix, Wout ∈
Rn×nout . The pool neuron activation function, f(x) is typically
tanh(), though many others have been used in ESNs [4], [6]. The
state update equations governing a typical discrete-time (k) ESN
are as follows:

x(k + 1) = f(Winu(k) + Wx(k)) (1)

y(k) = fout(Woutx(k + 1)) (2)

where u(k) is the matrix of current inputs to the ESN, y(k) is the
matrix of current outputs from an ESN and x(k) is the vector of
current neuronal activations in an ESN pool. For single-dimensional
inputs and outputs, called a Simple Echo State Network (SESN)
[7] the input and output matrices are simple vectors. fout is the
output function, in this paper this is linear (i.e. fout(x) = x).
Several variables control the function of an ESN, which include,
but are not limited to, the spectral radius of the W matrix, the
magnitude of the input scaling, the specific pool neuron activation
function used and the pools internal connectivity [8]. Many other
papers explore and explain these factors (e.g. [3], [4], [6], [8]), and
only typical values will be used here.
This paper concentrates on the properties of ESNs in cases of
damaged pools, i.e. pools that are altered after training. Very little
literature exists documenting the performance of damaged pools,

so we will be demonstrating the inability of a standard ESN to cope
with pool damage. ESNs suffer from an incomplete formalisation
of how input information is cast into the high dimensional pool
space, [3], [4] and therefore how to optimally design a pool for
a given problem. This work can be seen as a stepping stone of
research in how to effectively allocate pool resources to problems.

2.2. RLS
Recursive-Least-Square (RLS) is an algorithm building on the sim-
pler (and older) Least-mean-Square (LMS) algorithm, incorporating
the error history of a system into the calculation of the present
error compensation. This algorithm is used, in this case, to adjust
the Wout matrix during the run-time of an ESN, i.e. as an on-
line learning algorithm. The primary topic of investigation of this
research (in addition to question of basic viability) was that of the
algorithms forgetting factor, λ. The forgetting factor determines
how exponentially less important the error history is, with a value of
1 valuing all the system history (as well as the present state) exactly
the same, and lower values causing an exponential reduction in the
importance of the systems history. Literature states the forgetting
factor in most circumstances should be very close to, but less than
1 [8], [9]. In RLS the cost function to minimise is as follows [10]:

E(k) =

k∑
i=1

λk−ie(k)2 (3)

with e being the error function ytarget− y. After minimisation the
four equations governing RLS for ESNs are as follows:

wout(k + 1) = wout(k) + e(k)g(k) (4)

e(k) = ytarget(k)− y(k) (5)

g(k) = P(k − 1)x(k)
λ+ x(k)T P(k − 1)x(k)

(6)

P(k) = λ−1P(k − 1)− g(k)xT (k)λ−1P(k − 1) (7)

For a single output system, wout would be a column vector, as
would x(k). As can be seen in this form only the P matrix is
recursive, containing the history of the system. RLS is notoriously
unstable [8], and the choice of forgetting factor is important
in determining whether a given system will become unstable,
with higher factors typically being more numerically stable (i.e.
staying within expected magnitudes). Smaller λ values (causing
numerically unstable P -matrices) are especially problematic on
computers, where the double precision floating point standard is
used, and its upper range of ×10308 [11] can quickly overflow,
being treated as an infinity (and causing a breakdown in calculation
accuracy).

3 EXPERIMENTAL METHOD
The major focus of this paper is upon determining if the RLS
algorithm is suitable for use in making ESN pools dynamic. This
means the main focus of experimentation is on determining if
RLS can compensate for pool damage (i.e. by returning the pools
performance to near pre-damage levels) and whether there are limits
to this compensation. Extra experiments will then investigate what



Number of
neurons

200 Spectral Ra-
dius

0.95

Internal pool
connectivity

5% Number
of input
neurons

1

Pool neuron
activation
function

tanh() Number
of output
neurons

1

Input Scaling 0.1 Ridge
Regression
parameter

5× 10−6

Table 1: The parameters of the ESN used in this paper’s
experiments

effect the forgetting factor has upon RLS performance in this case.
An ESN with the parameters described in Table 1 was used for
every experiment detailed here.
Two different data sets were used to address these questions.
The first dataset was a simple function approximation: f(x) =
40x2

3+x4 − 3, −10 ≤ x ≤ 10, which is sufficiently regular to
allow for easy identification of the effects of pool alterations.
The second dataset, which describes a time series prediction task,
was the Normalised Auto-Regressive Moving Average (NARMA)
(τ = 30) time series prediction dataset. This dataset is a widely
used benchmark of time-series performance in the field of RC (see,
e.g. [3], [6], [12]).
Firstly, a control test is performed to demonstrate the ability of a
standard ESN to cope with pool alterations. The pool damage is
realised in the form of adding or removing pool neurons without
re-training the output layer. These control experiments involved
training an ESN to solve a given problem, then modifying the
pool and comparing the modified pool’s performance against its
original performance. A second control experiment, demonstrating
the ability of a 100 and 300 neuron pool to compute the given
problems is also constructed, as the pool modification occurs in
sets of 100 neurons (representing a contiguous group of neurons
dropping out of the network). This was performed to show that any
change in performance was not due to the overall pool size, but
due to the effects of pool damage.
To demonstrate the ability of the RLS algorithm to compensate for
pool damage an ESN with an RLS output layer was developed.
The output layer samples the pool as with a normal ESN, however
after every sampling the output weights are updated according to
the RLS algorithm [13].
First the output layer was trained on a given dataset, using the ridge
regression method to create an initial set of output weights. Then a
subset of the testing set was processed by the ESN (800 data points
out of 2000), after which the pool damage, i.e. adding or removing
neurons, occurred. After this damage, the remainder of the testing
set was processed. Recorded was the system output plotted with the
expected output, the instantaneous root-square-error between the
actual output and the expected output and the Root-Mean-Square-

Error (RMSE) of the entire output (excluding the initial transients,
see [3]). The experiments were averaged over 50 pool setup-train-
process data runs. These experiments were tested for different
values of the forgetting parameter, specifically 0.6 ≤ λ ≤ 1, in
steps of 0.02.
An extra experiment was performed, showing the difference in
execution time, measured in CPU time, i.e. the accumulation of
CPU time the process has used, between the RLS algorithm, and
the far simpler LMS algorithm on which it is based. Python’s timeit
module is used to profile the execution time as it avoids the pitfall
of simply using end time - start time as the processing time, and
provides a far more accurate (though not perfect) indication of the
time taken to compute [14]. Both types of ESN (i.e. RLS-ESN and
LMS-ESN) were set-up, trained and presented the testing dataset
(the ’simple’ function) 100 times, and the total and average of their
execution time was recorded. Since both set-ups are as similar as
possible the cause of time differences is the amount of processing
time required for each on-line training algorithm.
It can be seen that the experiments performed mainly involve testing
various values of the forgetting factor in a damaged ESN and
comparing the outcome of these runs against non-RLS controls
in the case of pool damage and no pool damage.

4 EXPERIMENTAL RESULTS

Figure 2: Output, y for iteration k for control and example
RLS systems.

The control experiments showed that a standard ESNs performance
rapidly diverges from expected when the pool is altered after
initial training. See Figure 2 for the control’s output against the
target output and RLS output, notice the slight noise near the
start (k < 100) is the initial transient. This RLS output is an
extrema, but does clearly show many of the features observed in
this research. The control experiments also showed little difference
between the performance of a 100, 200 & 300 neuron pool for
these problems.
In the forgetting parameter experiments (see Figure 3) we can see
best performance was derived for values of the forgetting parameter
far below the classical range for this parameter. Also seen is ’nan’



Figure 3: Output, y for forgetting parameter λ in the RLS-ESN,
for ’simple’ function dataset.

at lower values, representing the floating point number flag ’Not A
Number’ which occurs here because the RLS P-matrix overflows,
being represented by infinity, which causes (in the gain, g, equation)
an infinity to be divided by an infinity, which is represented in
floating point numbers as ’nan’. Figure 4 shows the instantaneous
Root-Square-Error (RSE) per output update, which shows the spike
in error at around k=800, and noise that follows. Notice the output
noise later in Figure 5 around iteration 1400, also note there is
no ’spike’ at the point of damage (k = 800) as the value of λ
used is extremely good at damage compensation. This noise is
caused by the P-matrix getting exceptionally large (e.g. on the order
of ×10100) and double precision floating point numbers having
an accuracy of 15 decimal places (i.e. accurate to ×1015 [11]),
so that the output calculations become increasingly incorrect and
noisy. This noise does not appear in all runs, and it seems that
the RLS algorithm compensates even for this noise (as the noise
swiftly disappears), but it does occasionally occur and degrade
performance.
In general then, the lower the forgetting parameter the better the

damage compensation (until the point of floating point overflow)
but the higher the forgetting parameter the better the stability. The
best range for maximising damage compensation and reducing
noise in the ’simple’ function case was found to be 0.84 to
0.9, for removing neurons, while the range 0.76 to 0.96 worked
best when adding neurons. For the NARMA30 dataset there was
far more noise when adding neurons, creating excessively large
RMSE values, seemingly at random, and the subtractive case simply
worked better (both in accuracy and noise minimisation) with lower
forgetting parameters, up to the point of system breakdown (at
λ ≈ 0.7). To be noted, however, is that the point of RLS breakdown
for this system is function magnitude specific, that is, the growth
of the P matrix is dependent on λ and x so functions of a larger
magnitude are likely to degrade quicker.
Seen in Table 2 are the results of the timing experiment, showing
the RLS algorithm taking significantly longer than the simpler
(though less accurate) LMS method. This would seem to suggest

Figure 4: The instantaneous RSE for an example set of runs

Figure 5: Output against iteration, displaying the noise that
occasionally appears.

that a less accurate, but faster algorithm would be useful for solving
this problem.

5 CONCLUSION
This work demonstrates the ability of RLS to return a damaged
ESN pool to its pre-damage accuracy. The work presented here,
while seemingly solving artificial problems (a graph-friendly ’sim-
ple’ problem and the NARMA-30 dataset), exists as part of a

Algorithm Time for 100 runs
(s)

time per run (s)

Least Mean
Squares

734.814 7.348

Recursive Least
Squares

280.778 2.808

Table 2: CPU over 100 runs for RLS-ESN and LMS-ESN



larger project, with this larger project being intended to provide
a multi-agent swarm a method to pool computational resources
for solving difficult problems (by dynamically joining ESN pools).
This work therefore is providing information on the selection of
the most low level form of co-operation in this larger project,
and investigated the viability of the RLS algorithm to work in
this capacity. The problems solved are function approximation
problems in the instantaneous and history-dependant cases, which
are common problems in real-world interactions.
In conclusion, while RLS has demonstrated the ability to com-
pensate for alterations to an ESNs pool structure in an on-line
manner, sometimes extremely well, its numerical instability reduces
its effectiveness enough to exclude it as a viable method for
compensating for pool alterations. Furthermore, the point at which
the instabilities simply become floating point infinities is likely
dataset-specific, and is certainly platform specific (e.g. single-
precision will destabilise far earlier, quad-precision later, etc.). Also
of consideration is the computational complexity, and thus time to
compute, of RLS, which (in this basic implementation) is very high
compared to other on-line algorithms, e.g. LMS.
Future work therefore will concentrate on using methods with
RMSE accuracy close to that of RLS but without the numeric
instability and with much less computational complexity so that this
method can be used in simple multi-agent swarms. Likely optimis-
ers for this future work include population-based algorithms such as
Particle Swarm Optimisation (PSO) and Stochastic diffusion search
(SDS). Another objective is to ascertain whether other forms of
problem (prediction, classification etc.) can also be solved in this
way, or if this method is more suited to one class of problems over
others.

6 REFERENCES
[1] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,

“Phoneme recognition using time-delay neural networks,” Acoustics,
Speech and Signal Processing, IEEE Transactions on, vol. 37, no. 3,
pp. 328–339, 1989.

[2] M. Lukoševičius, D. Popovici, H. Jaeger, U. Siewert, and R. Park,
“Time warping invariant echo state networks,” Citeseer, Tech. Rep.,
2006.

[3] H. Jaeger, “The ”echo state” approach to analysing and training
recurrent neural networks-with an erratum note’,” Bonn, Germany:
German National Research Center for Information Technology GMD
Technical Report, vol. 148, 2001.

[4] M. Lukoševičius, “Reservoir computing and self-organized neural
hierarchies,” Ph.D. dissertation, PhD thesis, Jacobs University Bremen,
Bremen, Germany, 2011.

[5] “Reservoir computing,” http://reservoir-computing.org/, Accessed
2013-04-27. [Online]. Available: http://reservoir-computing.org/

[6] J. J. Steil et al., “Online reservoir adaptation by intrinsic plasticity
for backpropagation-decorrelation and echo state learning,” Neural
Networks, vol. 20, no. 3, pp. 353–364, 2007.

[7] G. Fette and J. Eggert, “Short term memory and pattern matching with
simple echo state networks,” in Artificial Neural Networks: Biological
Inspirations–ICANN 2005. Springer, 2005, pp. 13–18.

[8] M. Lukoševičius, “A practical guide to applying echo state networks,”
in Neural Networks: Tricks of the Trade. Springer, 2012, pp. 659–686.

[9] M. H. Hayes, Statistical Digital Signal Processing and Modeling.
John Wiley & Sons, 1996.

[10] S. Haykin, Adaptive filter theory. Prentice Hall, 1991.

[11] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1–70, 2008.

[12] D. Verstraeten, B. Schrauwen, M. d’Haene, and D. Stroobandt, “An
experimental unification of reservoir computing methods,” Neural
Networks, vol. 20, no. 3, pp. 391–403, 2007.

[13] H. Jaeger, “Adaptive nonlinear system identification with echo state
networks,” in Advances in neural information processing systems,
2002, pp. 593–600.

[14] “timeit - measure execution time of small code snippets.” [Online].
Available: http://docs.python.org/2/library/timeit.html

http://reservoir-computing.org/
http://docs.python.org/2/library/timeit.html

	Introduction
	Background
	ESN
	RLS

	Experimental Method
	Experimental Results
	Conclusion
	References
	*-1em

