
A Cognitive Architecture made of a Bag of Networks
Alexander W. Churchill1 and Vera Vasas1 and Goren Gordon2 and Chrisantha Fernando1

Abstract. Our aim was to produce a cognitive architecture for mod-
elling some properties of sensorimotor learning in infants, namely
the ability to accumulate adaptations and skills over multiple tasks
in a manner which allows recombination and re-use of task specific
competences. The control architecture we invented consisted of a
population of compartments (units of neuroevolution) each contain-
ing networks capable of controlling a robot with many degrees of
freedom. The nodes of the network undergo internal mutations, and
the networks undergo stochastic structural modifications, constrained
by a mutational and recombinational grammar. The nodes used con-
sist of dynamical systems such as dynamical movement primitives,
continuous time recurrent neural networks and high-level supervised
and unsupervised learning algorithms. Edges in the network repre-
sent the passing of information from a sending node to a receiving
node. The networks in a compartment working together encode a
space of possible subsumption-like architectures that are used to suc-
cessfully evolve a variety of behaviours for a Nao H25 humanoid
robot.

1 Introduction
Learning a controller for a complex multiple degree of freedom de-
vice such as a child or a robot is a non-trivial problem and the
principles by which development achieves goals with such high-
dimensional systems has been the subject of considerable investi-
gation from the early work of Bernstein [18], the dynamical systems
approach of Thelen and Smith [23], to the robotics experiments of
Schaal’s group on Dynamic Movement Primitives [16]. The criti-
cal property of developmental systems that fascinated us was their
ability to accumulate adaptations without catastrophic forgetting, a
topic that has recently been highlighted by Miller’s group [11] as be-
ing highly suggestive of a role for structural plasticity in the brain
along constructivist principles [1]. A holy grail in developmental
robotics would be to achieve open-ended adaptation over long peri-
ods of time, with the same cognitive architecture being able to boot-
strap prior knowledge and competences to achieve more and more
complex tasks. Whilst incremental evolution has been demonstrated
for one or two steps [4], an open-ended accumulation of adaptation
has not been achieved. An attempt has been made in genetic pro-
gramming to evolve subsumption architectures [24] but scaling up to
high-dimensional robots has not been attempted.

We use a directed graph based control architecture capable of par-
allel processing, in which cyclic networks are allowed. The network
is analogous to a neural network controller, however, the nodes can
be much more complex than simple neurons. There is a long his-
tory of evolving parallel potentially cyclic directed graph represen-

1 Queen Mary, University of London, UK, email:
{a.churchill,v.vasas,c.t.fernando}@qmul.ac.uk

2 MIT Media Lab, Cambridge, MA, USA, email:goren@gorengordon.com

tations, for example Teller and Veloso use parallel evolution for data
mining (the PADO algorithm) to solve supervised learning problems
[22]. Ricardo Poli uses a parallel genetic programming system called
PDGP (parallel distributed genetic programming) to evolve feedfor-
ward parallel programs to solve the XOR problem amongst others
[13]. Cartesian genetic programming [12] also evolves feed-forward
programs. The dominant paradigm for structural evolution of net-
works is now NEAT [19], a powerful system because it allows diver-
sity maintenance, protects innovations, and controls the dimension-
ality of the genotype carefully. Our system differs from the above ap-
proaches in several respects. First, it is intended to be a cognitive ar-
chitecture for the real-time control of robots, secondly the nodes are
intended to be complex machine learning algorithms, not arithmetic
primitives or simple mathematical functions, thirdly, our system is
intended to be capable of controlling a humanoid robot. As in the ex-
isting systems our nodes have multiple functions and transmit infor-
mation between each other. Our motivation for using the graph repre-
sentations was to eventually achieve compositionality, systematicity,
and productivity because it is possible for specific node types to be
physical symbol systems [3] if the rules for operating on them are
grammatical. Previous attempts have been made to achieve grammar
based genetic programming [10] in tree structures, but not in cyclic
distributed parallel graph structures of the types described above, to
our knowledge. The challenge is to discover an evolvable grammar
that generates fit variants with high probability, a task not unlike that
faced in language learning by the fluid construction grammar [20].

The structure of the paper is as follows. The network represen-
tation is described followed by the stochastic grammatical variation
operators, and the overall evolutionary algorithm that controls the
robot in real-time by generating and selecting active units. Some pre-
liminary adaptation results are presented, and the network structures
responsible for the behaviour are described. We have not yet achieved
the accumulation of adaptation, but we have shown that a variety of
distinct tasks can be evolved with disjoint network representations
that are suitable for recombination. Several critical problems are en-
countered and discussed, and an approach is sketched for making
progress.

2 Methods

The basic building block of the model is a node, it gets vector inputs,
performs a processing operation, and sends vector messages to other
nodes with some delay. Nodes when activated, transmit this activ-
ity state to downstream nodes, and remain active for a fixed period.
Nodes can have internal states. Nodes are connected to create poten-
tially disjoint directed graphs. The unit of neuro-evolution consists
of a set of such disjoint graphs in a compartment. Sensory nodes
get raw sensory input, or act as internal pattern generators that en-
code the amplitudes and frequencies of a vector of sine waves. These

mailto:a.churchill@qmul.ac.uk
mailto:goren@gorengordon.com

are formally sensor nodes because they can be initiator nodes for a
graph, i.e. are active unconditionally. Motor nodes contain a vec-
tor of motors that they control. Their input vector is used to set the
motor angles of these motors at each time-step the node is active,
and a re-afferent copy or corollary discharge of the command an-
gles is always output [2]. If there is no input, a default motor angle
for each motor is stored. Processing nodes receive inputs only from
other nodes. They include Euclidean distance nodes that gets a vec-
tor from its input nodes and calculates the distance to an internally
stored parameter vector; a linear transform node that does the dot
product of the input vector and an internally stored weight matrix to
produce a vector of outputs; an Izhikevich neuron based liquid state
machine [7] node. A reinforcement learning node has a two part
input vector, a data part and a reward part. The data part consists of
inputs from a set of other nodes, typically transform nodes or sen-
sory nodes e.g. signalling joint angles. The reward part must be a
single scalar value obtained from a transform node, for example this
could signal the prediction error or the proximity to a desired state.
The output of a learning node is a vector that will typically encode
some parameters for downstream motor nodes to use, or it might be
a temporal difference error signal. Types of reinforcement learning
node include a stochastic hill climbing node, an actor-critic node,
a simulated annealing node and a genetic algorithm node. Super-
vised learning nodes undertake online supervised learning based on
an input training vector, and an input target vector. They do function
approximation (regression) or classification. Such an node is essen-
tial for efficiently learning models of the world, e.g. forward models,
or inverse models [17, 9, 5]. The type of model depends purely on the
identity of the transform node that sends it the training and target vec-
tors during its training. Unsupervised learning nodes take an input
vector and compress it, e.g. a k-means clustering node does online
clustering and outputs the class of each novel data point input to it;
a Principle Component Analysis node takes an input vector, has a
parameter n which is the number of principle components to output,
and the output vector is the intensity of those n first principle compo-
nents. In the Nao setup, there are high-level face recognition nodes,
i.e. a sensor node that receives input from a camera and outputs a
label and x,y retinal coordinate of a face; and a speech recognition
node, which is a sensor atom that receives input from a microphone
and outputs either the text or label of the speech. Other high level
nodes in the Nao include walk nodes, motor nodes that control the
legs to walk to a particular location and take high level Cartesian
instructions as input. To summarise, the repertoire of nodes is es-
sentially unbounded and is only limited by their encoding into the
framework. In this manner, any combination of such nodes can form,
thus enabling an open-ended evolution of complex controllers. This
advantage is also a disadvantage, the number of nodes is huge, and
the search space of possible networks is absolutely enormous. This
makes evolution in such a space extremely difficult.

Activation of the networks in a compartment always start at the
sensory nodes, these activate in parallel the downstream processing
nodes with the appropriate delays, which in turn are typically con-
nected to motor nodes. There may be recurrent connections. The unit
of neuroevolution is a “bag” of disjoint graphs to which fitness is as-
signed as a unit. The motivation for this is that it enables the robot
to be subject to potentially multiple parallel independent behavioral
policies that together control the whole robot in parallel. By allow-
ing graphs to be disjoint, a bag of potentially useful network motifs
can be preserved silently and become utilised by the system in later
variation events during evolution. This unusual nature of of compart-
ment representations will become more clear when the initialisation

of networks and the variation operators acting on them is described
below.

2.1 Evolvable Action Grammar

We now describe the variation operations or graph rewrite rules [14].
De novo node constructor operators make new networks at initiali-
sation giving the robot a primary sensorimotor repertoire of reflexes.
For example such a network may consist of a single sensory node
with a random number of sensory inputs connected to a linear trans-
form node with a delay. The linear transform unit may have a random
initial weight matrix sending output with random delays to three mo-
tor nodes. Each motor node may control 1 to 4 motors, randomly
chosen. A complex constructor is also used throughout evolution as
a macro mutation device for inserting functional motifs that con-
sist of random sensory-(linear transform)-motor triplets in a chain
of activation. Graph replicator operators produce perfect copies of
graphs. These are required for replication and evolution of compart-
ments (bag of graphs). Graph connectivity operators only influ-
ence the connectivity between already existing nodes within a single
graph i.e. the messages that nodes get from other nodes within the
molecule, the delays with which the messages influence activation,
and the time period for which a node is active after activation. For
example, the connection deletor removes a message i.d from the in-
put vector of a node. A connection adder adds a new message i.d.
of a node in the graph to the input vector of another node in the
graph. For now, all nodes are allowed to connect to/from any other
node type, but evolvability in future work will demand this to be con-
strained. A critical feature of the above operators is that deletion of
an edge may create two disjoint graphs that remain in the same com-
partment. Node duplication operations make copies of nodes within
a single graph. The parallel node replicator takes a node and copies
it entirely along with its input and output links such that this node
now exists in parallel with its parent node, with the same inputs and
outputs of the parent node. The serial node replicator copies a sin-
gle node but instead of copying the inputs and outputs of the node, it
makes the input to the offspring node the output of the parent node,
and makes the offspring node connect to those nodes that the parent
node connected to, i.e. it inserts a copy of the parent node down-
stream of the parent node. A node deletor operator removes a node
along with its input and output edges, thus potentially disconnecting
a graph into two (or more) components. All these operators act on
the message i.d list in the input vector of a node. Thus connectivity
is encoded at the input end of nodes, not at the output ends. Intra-
node operators modify the sensory inputs, the motors controlled, the
transfer functions and the internal states of the nodes. Intra-node mu-
tations depend on the specific node type. Intra-node operators do not
mutate the type of the node. This greatly restricts the mutability of the
genome, but increases its evolvability. Multi-graph recombinators
take N networks and construct a network that is derived from proper-
ties of the N parent networks. In analogy with genetic programming
[8], a standard operator is the branch crossover operator that is de-
fined only on trees and not recurrent graphs. This chooses two nodes
and crosses them over along with any downstream nodes to which
they are connected. Motif crossover operators allow crossover only
between functionally isomorphic digraph motifs, in order to prevent
crossover from being destructive due to the competing conventions
problem.

The evolutionary algorithm consists of a population of 20-100
units of evolution (compartments). A binary tournament genetic al-
gorithm is used to select pairs of units which are evaluated sequen-

[]

[10, 16, 3, 21]

active: 5

5

[10, 16, 3, 21]

active: 5

5 5

Figure 1: Showing a hand-designed actor graph, where graph
edge labels refer to activation delay times, “active” shows the
number of time steps a node remains active for and motors are
labelled in the motor atom (red). Motor key: 0:HeadYaw, 1:Head-
Pitch, 2:LShoulderPitch, 3:LShoulderRoll, 4:LElbowYaw, 5:LEl-
bowRoll, 6:LWristYaw, 7:LHand, 8:LHipYawPitch, 9:LHipRoll,
10:LHipPitch, 11:LKneePitch, 12:LAnklePitch, 13:LAnkleRoll,
14:RHipYawPitch, 15:RHipRoll, 16:RHipPitch, 17:RKneeP-
itch, 18:RAnklePitch, 19:RAnkleRoll, 20:RShoulderPitch,
21:RShoulderRoll, 22:RElbowYaw, 23:RElbowRoll, 24:RWristYaw,
25:RHand.

tially on the robot. Their fitness is compared and the winner over-
writes the loser with mutation and recombination as described above
in the operator section. This continues until the behaviour is interest-
ing, or the robot breaks or overheats.

3 Results
This section should be read while referring to the accompanying
videos in the Supplementary Material.3 Simulations are conducted
in Webots for Nao, and real world experiments are conducted with
the Nao robot itself.

3.1 Maximising distance travelled by a humanoid
robot

In the first experiment the fitness of a compartment is defined as the
distance travelled by the Nao during a single episode. The compart-
ments successfully evolved to increase the distance travelled by the
robot in a fixed time period. In order to test the efficacy of the intra-
atomic mutations, an initial graph de novo constructor was used. An
example initial graph can be seen in Figure 1 and is formed of three
nodes - a sensor that is used for activation only, i.e. with no output,
and two motor nodes, which operate the same motors. This graph
is called a SMM molecule. The activation and delay times were ini-
tialised to create an oscillating effect by alternating between motor
angles set to opposite directions in each motor node.

In the first evolutionary run of this system, only the motor angles
and the delay and activation times of the actor graph were muta-
ble, not the graph topology. This meant that fitness could only be
improved through increasing the speed and strength of oscillations
during the fixed time period. Each trial lasted for 50 time steps of 0.1
seconds, and at the start the simulated Nao robot was set to a resting
supine position, illustrated in Figure 2. Evolution was performed for
250 generations, each consisting of 10 binary tournaments and 20

3 Supplementary material is available at
http://www.robozoo.co.uk/research/papers/aisb2014

(a) Front

(b) Side

Figure 2: Showing the resting position of the NAO, which it was reset
to at the start of each trial. Images are from different angles of the
same scene.

evaluations. The fitness of the individuals at every 10 generations is
shown in Figure 3(a). There is a clear, although not dramatic increase
in fitness (distance travelled) over the course of evolution. Fitness
improvements occur after 100 and 120 generations, where the best
solutions move from a distance of around 0.3 metres to close to 0.4
and then close to 0.5 metres. In terms of behaviour, the initial setup
conditions create a largely symmetrical rocking motion that moves
the robot slowly towards its left. The best behaviour after 50 gener-
ations rocks the robot with much greater force, achieved by raising
the legs higher, which causes it to move further to the left over the
course of a time trial. At 100 generations, the legs move higher and
are raised for more time, which causes the robot to rotate further, and
thus increases the amount of distance travelled. At 150 generations,
it employs the same behaviour, moving to its right, but the legs oscil-
late more quickly. This final behaviour appears to be a local optimum
for the robot.

In a second evolutionary run, the complexity of node mutations
was increased to make motor identities mutable, but again with graph
topology held fixed. The same starting conditions, i.e. the node struc-
ture and parameters, were used as in the first run. The fitness of in-
dividuals over the course of evolution is shown in Figure 3(b). Here,
a similar performance to the first run is achieved after only 70 gen-
erations, and by 100 evaluations the system exceeds the best results
found on the first run. After 50 generations the behaviour looks simi-
lar to the first run. The robot rotates from side to side, biased towards
movements on its left side. The molecular graphs in Figure 4 show
that after 50 generations, 5 left sided motors and 3 right sided motors
are employed. After 100 generations, the behaviour of the best com-

(a) Activation and Delay time and motor angle mutations only

(b) Activation and Delay time, motor angle and motor mutations

Figure 3: Showing the fitness of actor molecules over 250 generations
of evolution on the maximise distance task, for (a) when only acti-
vation and delay time and motor angles mutations permitted and (b)
where additionally the motors used could be mutated. Each genera-
tion consists of 10 binary tournaments.

partment has changed. The left leg now extends quite far and then
drags the robot towards its left side. Looking at the node structure, the
second node is now composed entirely of left sided motors. At 200
generations the right leg also extends and a stepping motion emerges.
The behaviour of the best controller after 100 and 5000 evaluations is
shown in video V1 in the Supplementary Material, both in simulation
and on the real robot.

3.2 Evolving headstands in a humanoid robot

In the second experiment, compartments were evolved for 3,000 bi-
nary tournaments (6,000 evaluations) with all the variation operators
included. Fitness was obtained by maximising the z-accelerometer
sensor in the torso of Nao over the course of 150 time steps. For ex-
ample this would be maximised by the robot standing on its head.
Figure 5 shows the fitness of each evaluated member of the popula-
tion at each pseudo-generation of 10 binary tournaments. The com-
partments are clearly increasing in fitness over the course of evolu-
tion. There is an especially large jump over the first 50 generations,

[10, 25, 13, 11]

active: 5

[10, 16, 3, 4]

active: 5

5 5

[]

5

(a) Generation 50

[10, 16, 17, 11]

active: 4

[10, 8, 11, 4]

active: 3

4 4

[]

4

(b) Generation 100

[]

[10, 8, 17, 11]

active: 3

4

[10, 14, 11, 4]

active: 3

4 4

(c) Generation 150

[10, 8, 17, 11]

active: 3

[10, 14, 11, 4]

active: 3

4 4

[]

4

(d) Generation 200

[10, 8, 17, 11]

active: 3

[10, 22, 11, 4]

active: 3

4 4

[]

4

(e) Generation 250

Figure 4: Showing the atomic structure of the best actor molecules
after (a) 50, (b) 100, (c) 150, (d) 200 and (e) 250 generations on the
second evolutionary run of the maximise distance task. Sensor atoms
(blue) provide activation signals only. Edge numbers indicate delay
times and “active” shows the number of time steps a motor atom (red)
remains active for. Refer to Figure 1 for the motor key.

and then a more gradual but positive ascent throughout the rest of
evolution. The graph on the right of Figure 5 shows the earlier fitness
history of the population. After 32 generations there is a sudden drop
in fitness. This occurs because the Nao moves into a position on its
side where it is balanced and unable to return to the rest position on
its back. This means that compartments are now selected in effec-
tively a different environment. After 6 generations, Nao moves out
of this position and can reset normally again.

The compartment representing the fittest individual found at the
end of evolution can be seen in Figure 6. The compartment is made
up of 3 disconnected graphs that get activated and produce move-
ment over the course of a trial, labelled as Groups A - C, with a small
number of atoms that will lie dormant (never activated). Among the
dormant nodes there is a sensor node connected to a linear transform
node that will be activated but will have no effect on the behaviour

Table 1: Fitnesses of the individual and combinations of dis-
joint graphs from best compartment found on the maximise z-
accelerometer task, labelled as shown in Figure 6.

Group Fitness
A 575
B 459
C 272
A + B 772
A + C 634
B + C 590
A + B + C 807
A + B + C (Changed Z-accelerometer sensors to X-
accelerometer sensors) 467

of the robot. The fitnesses scored by the three separate active groups
can be seen in Table 1. The behaviour of each entry in the table can
be seen in Video V2. The compartment containing all three parts
performs the best, and the fitness is considerably greater than any
one group on its own, showing that the disjoint graphs do interact
behaviourally to create a more adaptive behaviour than any single
disjoint component of the compartment. The final robot stance ob-
tained by this compartment can be seen in Figure 7(a). Group A, the
largest disjoint graph, has the highest fitness when considered on its
own. It causes both of Nao’s legs to move, as well as its right arm,
which causes it to move backwards into an arch-like position, raising
its torso and so increase its z-accelerometer reading. Group B also
scores well by itself, mainly moving Nao’s legs, with a larger em-
phasis on the right one. This leads it to move its torso backwards.
Group C does not produce much movement when starting from a
resting position. The combination of Groups A and B moves both
legs far back underneath the torso, arching Nao backwards at a sharp
angle, as can be seen in Figure 7(b). With all three groups together,
the robot moves its legs even further backwards, drawing the torso
even closer to a vertical position.

The two highest scoring groups (A and B) both make use of the
Z-accelerometer sensor (143 in Figure 6). To test the impact of this
sensor, the molecule was modified to replace all occurrences of the
Z-accelerometer sensor with the X-accelerometer, which had the af-
fect of oscillating the robot’s torso from side to side, leading to a
much reduced fitness score. The final stance produced by the modi-
fied compartment can be seen in Figure 7(c). This demonstrates that
a true closed-loop solution has been found.

An interesting variant of the above task involves initialising the
robot from the prone position rather than the supine position. Fig-
ure 8 shows that evolution to max z from a prone solution is much
faster and more effective evolution to max z from a supine position.
Video V3 shows the best behaviour evolved after 1400 evaluations.
The solution is quite different, exploits the initial position of the Nao
and is elegantly simple.

3.3 Evolving bouncing behaviour in a humanoid
robot on a Jolly Jumper

In the third set of experiments, a physical NAO robot is placed in a
Jolly Jumper infant bouncer (see Figure 9), which consists of a har-
ness attached to a stand by a spring. This is influenced by Thelen’s
work [23], which describes how an infant placed in a bouncer discov-
ers configurations of movement dynamics that provide acceptable so-
lutions and then tunes these to produce efficient bouncing. The robot
is placed in the harness and suspended with the tip of its feet firmly
touching a cushion on the ground, in the first experiment, and just
touching the floor in the second. The fitness function is to maximise

Figure 5: Showing the fitness of compartments over 300 generations
(top) and 50 generations (bottom) of evolution on the maximise z-
accelerometer task. Each generation consists of 10 binary tourna-
ments and 20 evaluations. Both figures show data from the same run.

the first derivative of the z-accelerometer (z) at each time step (t),
f(x) =

∑T
t=1 |zt+1− zt|. Each trial lasts for T = 100 time steps of

100ms each. At the end of the trial, the robot’s joints are relaxed and
it rests for 3 seconds. It may not return to the same position at the start
of each trial, and the spring will not be completely dampened from
the previous appraisal, which introduces noisy fitness evaluations.

In the first experiment, a Microbial GA with a population of 10 is
applied for 800 evaluations to a fixed graphical structure, evolving
only the parameters. The compartment can be seen in Figure 10, and
consists of four Dynamic Motor Primitive (DMP) [15] nodes, con-
nected to the knee and ankle motors, and receiving afferent signals
from the motors as input. Additionally, two separate graphs take the
force sensitive resisters (FSR) from each foot as input, and output
to the ankle and knee motors for their respective sides of the body.
These graphs will take control if the FSR signal is above an evolv-
able threshold. Figure 11 shows the fitness of the population over the
course of evolution. The run proceeds in several stages, which are
shown in Video V4. Initially a kicking motion develops, that enables
fitness to increase quickly. After 120 evaluations, the feet get stuck
on the cushion, and the robot is unable to use its previous motion. A
new strategy emerges, moving the knee as far back as possible be-
fore kicking. After 200 evaluations, with the feet now unstuck, a new
solution is found, moving the left knee far back and relying on a fast
kicking motion in the right leg to bounce. After 350 evaluations, the

Figure 6: Showing the compartment that represents the best individ-
ual found on the maximise Z-accelerometer task. There are three
disjoint connected graphs that get activated during a run, and these
have been highlighted and labelled A, B and C. Blue show sen-
sors with the numbers representing sensors shown in the key be-
low, green represents linear transform nodes with a maximum of
5 outputs, yellow Euclidian distance nodes with their target vector
denoted inside, orange shows PCA nodes with the number of out-
puts denoted inside, black shows a K-Means node with the num-
ber of clusters denoted inside and red shows motor nodes with mo-
tors denoted inside (refer to Figure 1 for the motor key). Sensor
key: 59:HeadYaw, 68:LKneePitch, 74:RElbowRoll, 77:RHipPitch,
139:GyroscopeY, 143:AccelerometerZ, 204:DistanceZ.

cushion is removed, and the robot is now suspended above the ground
at the start of each trial. Fitness falls sharply, as previous strategies
relying on contact with the ground are much less successful. Fitness
quickly improves, and solutions adapt to this new condition, with the
knees travelling much greater distances during each oscillation. Af-
ter 500 evaluations fitness returns to the previous level and then is
quickly surpassed, with the best solutions achieving a fitness of over
9. This shows that the presented architecture is able to quickly adapt
in a dynamic environment.

A second experiment explores a similar task but with an evolved
topology. A more complex evolutionary process is employed in this
experiment, inspired by NEAT [19]. A population is seeded with 20
identical copies of a small graph consisting of a DMP node con-
nected to the left knee and receiving an afferent signal as input. This
is initialised to perform a basic oscillatory motion. As in NEAT, each
atom is assigned a unique id. An individual, i, is sequentially com-
pared to each member, j, of each species using the similarity mea-
sure, s(i, j) = 1

4
[ss(i, j) + sp(i, j) + sm(i, j) + sshc(i, j)]. Here,

ss(i, j), sm(i, j), sp(i, j), are functions which return the number of
shared sensors, motors and processing node functions respectively,
and sshc(i, j) returns the number of shared connections between
nodes with the same unique id. If s(i, j) is below a threshold, sthresh
(0.5 in this experiment), i is assigned to the species of j and the
search is halted. Otherwise, i is assigned to a new species. The fit-
ness score of each individual is divided by the number individuals in
its species. A mutation count, mutc, initialised at 0, is also assigned
to each new individual, and incremented if a mutation event occurs.
Structural mutations are only permitted if mutc > 3. In this way,
innovations are protected and behavioural diversity is encouraged in
the population. Additional variation operators pertaining to the DMP

(a) Groups A, B and C together

(b) Groups A and B together

(c) Groups A, B and C together, X-accelerometer
substituted for Z-accelerometer

Figure 7: Showing the final position of the Nao after different molec-
ular groups are used for the actor, labelled as shown in Figure 6.

atoms are also included in this experiment. Disjoint graphs contain-
ing a DMP have an explicit probability of duplicating, and a DMP in
one graph can be replicated and replace an existing DMP in another.

Evolution was again run directly on a real NAO robot, over the
course of 11 hours. Figure 12 shows the fitness of each individual in
the population after each evaluation. There is a clear improvement in
competence on this task from the individuals in the initial population
to those at the end of the run. The initial behaviour that the popula-
tion was seeded with provided an acceptable fitness of between 3 and
5. After around 500 evaluations, structural mutations begin to have a
noticeable effect on fitness. There is a climb in fitness from evalua-
tions 500 to 1000, where the best individuals improve from fitness of
5 to 6.5, and again from evaluations 1100 to 1500, where the fitness
of the best increases to around 8.5. Figure 13 shows the compartment
of the best individual from the final population. As with the compart-
ment shown in Figure 6, it contains redundancy, with several graphs
lacking sensors or motors. The main driving force is a single DMP,
which is used to control the left hip, right hip, left shoulder and right
knee. A second molecule also controls the right knee, which can reset
actions sent from the DMP, and create additional oscillatory move-
ments. This solution produces rapid kicking motions, enabling it to
move quickly along the longitudinal axis, and thus attain fast changes
in its z-accelerometer sensor.

(a) Evolutionary fitness dynamics

(b) Final pose obtained

Figure 8: Evolution to maximise the z-accelerometer from the prone
position. (a) There is a punctuated increase in fitness. (b) The final
pose obtained is of high fitness.

4 Conclusion

An outline and some preliminary investigations of a modular and
evolvable control architecture for high-dimensional robotic systems
has been described. It remains to see whether the architecture is ca-
pable of the accumulation of adaptation and transfer learning across
multiple tasks by the use of an archive of control motifs. The problem
with the architecture is simultaneously its strength, i.e. it is too rich.
A detailed investigation of the evolvability of the architecture will
be needed in future if it is to be made efficient. One aspect missing
from the architecture currently is gating and channeling at the inputs
and outputs. Evolvable control flow operations are also needed. This
adds an even greater complexity to the evolvability problem. An al-
ternative approach is to begin with existing architectures for modular
robot control, e.g. [6] [21], encode them within the above framework,
and allow them to mutate. What is clear is that methods are acutely
needed to deal with the issue of poor evolvability arising from the
large space of possible networks in the current system.

ACKNOWLEDGEMENTS

The work is funded by the FQEB Templeton grant ”Bayes and Dar-
win”, and the FP-7 FET OPEN Grant INSIGHT.

Figure 9: The NAO robot in a Jolly Jumper infant bouncer.

Figure 10: The fixed topology compartment used in the first Jolly
Jumper experiment. DMP = Dynamic Motor Primitive, FSR = Force
Sensitive Resistors. The red nodes are sensors and the green nodes
are motors.

REFERENCES

[1] D.B Chklovskii, B.W. Mel, and K. Svoboda, ‘Cortical rewiring and in-
formation storage’, Nature, 431, 782–788, (2004).

[2] T. B. Crapse and M. A. Sommer, ‘Corollary discharge across the animal
kingdom’, Nat Rev Neurosci, 9(8), 587–600, (2008). Crapse, Trinity B
Sommer, Marc A R01-EY017592/EY/NEI NIH HHS/United States Re-
search Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t
Review England Nature reviews. Neuroscience Nat Rev Neurosci. 2008
Aug;9(8):587-600.

[3] J.A. Fodor and Z.W. Pylyshyn, ‘Connectionism and cognitive architec-
ture: A critical analysis’, Cognition, 28, 3–71, (1988).

[4] Faustino Gomez and Risto Miikkulainen, ‘Incremental evolution of
complex general behavior’, Adaptive Behavior, 5(3-4), 317–342,
(1997).

[5] G. Gordon and E. Ahissar, ‘Hierarchical curiosity loops and active sens-

Figure 11: Showing the fitness solutions of every 10 evaluations, over
800 evaluations on the first Jolly Jumper experiment.

Figure 12: Showing the fitness of all solutions over 11 hours of eval-
uations on the second Jolly Jumper experiment.

ing’, Neural Netw, 32, 119–29, (2012). Gordon, Goren Ahissar, Ehud
Neural Netw. 2012 Aug;32:119-29. Epub 2012 Feb 14.

[6] M. Haruno, D.M. Wolpert, and M. Kawato, ‘Mosaic model for sen-
sorimotor learning and control’, Neural Computation, 13, 2201–2220,
(2001).

[7] E. M. Izhikevich, ‘Polychronization: computation with spikes’, Neural
Comput, 18(2), 245–82, (2006). Izhikevich, Eugene M Neural Comput.
2006 Feb;18(2):245-82.

[8] John R. Koza, Genetic programming III : darwinian invention and
problem solving, Morgan Kaufmann, San Francisco, 1999. 99010099
John R. Koza ... [et al.]. ill. ; 25 cm. Includes bibliographical references
(p. [1081]-1114).

[9] H. Lalazar and E. Vaadia, ‘Neural basis of sensorimotor learning: modi-
fying internal models’, Curr Opin Neurobiol, 18((6)), 573–581, (2008).

[10] Robert I Mckay, Nguyen Xuan Hoai, Peter Alexander Whigham, Yin
Shan, and Michael ONeill, ‘Grammar-based genetic programming: a
survey’, Genetic Programming and Evolvable Machines, 11(3-4), 365–
396, (2010).

[11] Julian F Miller and Gul Muhammad Khan, ‘Where is the brain inside
the brain?’, Memetic Computing, 3(3), 217–228, (2011).

[12] Julian F Miller and Peter Thomson, ‘Cartesian genetic programming’,
in Genetic Programming, 121–132, Springer, (2000).

[13] Riccardo Poli, Parallel distributed genetic programming, Citeseer,

['RKnee']

['RHip']

['LHip']

['RHip']

['LElRoll']

LT

['RHip']

['XAccel']

DMP

['RHip']

DMP
['RKnee']

['LKnee']

LT

['RKnee']

['LHip']

['ZAccel']

['LHip']
['LShRoll']

['RKnee']

DMP

['RElYaw']

Figure 13: Showing the best compartment found at the end of evolu-
tion on the second Jolly Jumper experiment.

1996.
[14] Grzegorz Rozenberg, Handbook of graph grammars and computing by

graph transformation, World Scientific, Singapore ; New Jersey, 1997.
96037597 edited by Grzegorz Rozenberg. ill. ; 23 cm. Includes biblio-
graphical references and indexes. v. 1. Foundations.

[15] Stefan Schaal, ‘Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics’, in Adaptive Motion of Ani-
mals and Machines, 261–280, Springer, (2006).

[16] Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert, ‘Learn-
ing movement primitives’, in Robotics Research, 561–572, Springer,
(2005).

[17] Reza Shadmehr, ‘Generalization as a behavioral window to the neural
mechanisms of learning internal models’, Human Movement Science,
23, 543–568, (2004).

[18] O. Sporns and G. M. Edelman, ‘Solving bernstein’s problem: A pro-
posal for the development of coordinated movement by selection’,
Child Development, 64, 960–981, (1993).

[19] Kenneth O Stanley and Risto Miikkulainen, ‘Evolving neural networks
through augmenting topologies’, Evolutionary computation, 10(2), 99–
127, (2002).

[20] L. Steels and J. De Beule. Unify and merge in fluid construction gram-
mar, 2006.

[21] J. Tani and S. Nolfi, ‘Learning to perceive the world as articulated: an
approach for hierarchical learning in sensory-motor systems’, Neural
Networks, 12, 1131–1141, (1999).

[22] Astro Teller and Manuela Veloso, ‘Program evolution for data mining’,
International Journal of Expert Systems Research and Applications, 8,
213–236, (1995).

[23] Esther Thelen, ‘Motor development: A new synthesis.’, American psy-
chologist, 50(2), 79, (1995).

[24] Julian Togelius, ‘Evolution of a subsumption architecture neurocon-
troller’, Journal of Intelligent and Fuzzy Systems, 15(1), 15–20, (2004).

	Introduction
	Methods
	Evolvable Action Grammar

	Results
	Maximising distance travelled by a humanoid robot
	Evolving headstands in a humanoid robot
	Evolving bouncing behaviour in a humanoid robot on a Jolly Jumper

	Conclusion

