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Abstract. NeuroEvolution is the application of Evolutionary Algo-
rithms to the training of Artificial Neural Networks. Currently the
vast majority of NeuroEvolutionary methods create homogeneous
networks of user defined transfer functions. This is despite Neuro-
Evolution being capable of creating heterogeneous networks where
each neuron’s transfer function is not chosen by the user, but selected
or optimised during evolution. This paper demonstrates how Neuro-
Evolution can be used to select or optimise each neuron’s transfer
function and empirically shows that doing so significantly aids train-
ing. This result is important as most NeuroEvolutionary methods are
capable of creating heterogeneous networks using the methods de-
scribed.

1 Introduction

NeuroEvolution (NE) is the application of Evolutionary Algorithms
(EA) to the training of Artificial Neural Networks (ANN). NE’s
history began by evolving the connection weights of fixed topol-
ogy ANNSs [23, 35]. This method brought many advantages over the
still popular gradient based methods; such as back propagation [24].
These advantages include: being able to escape local optima, being
less sensitive to the initial connection weights, being suited to deep
ANNs and not requiring that each neuron’s Transfer Function (TF)
be differentiable [37]. NE is also suited to reinforcement learning
as well as supervised learning; whereas back propagation is only
suited to supervised learning. Other ANN training methods such as
restricted Bolzmann machines are also suited to unsupervised learn-
ing [26].

A significant advantage of NE is its ability to evolve the topology
of ANNS; as well as the connection weights. Topology evolving NE
methods include: GNARL [1], NEAT [27], SAGA [4] and CGPANN
[8, 29]. This ability to automatically create suitable topologies is sig-
nificant as topology has been shown to strongly influence the effec-
tiveness of back propagation [10] and weight only evolving NE [30].
Evolving the topology of ANNSs has even been shown to be more im-
portant to training than evolving connection weights [30]. Although
some non-evolutionary ANN training methods do adapt topology,
they typically achieve this by iteratively adding or removing neurons
during training. This approach is akin to a local search of topologies,
and is consequently likely to become trapped in locally sub-optimal
topologies [1].

Interestingly, NE can also be used to optimise the TF of each neu-
ron within heterogeneous ANNs. However, this capability of NE has
been widely overlooked in recent research. Indeed, at the turn of the
21* century many ANN publications stated that more research was
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required surrounding the optimisation of TFs: “Relatively little has
been done on the evolution of node transfer functions, let alone the si-
multaneous evolution of both topological structure and node transfer
functions” [37], “The current emphasis in neural network research is
on learning algorithms and architectures, neglecting the importance
of transfer functions” [5] and “Selection and/or optimisation of trans-
fer functions performed by artificial neurons have been so far little
explored ways to improve performance of neural networks in com-
plex problems” [6]. However, a search of the literature reveals that
there has been little active research in this area. This paper intends
to help fill this gap by showing how NE can easily optimise neuron
TFs during evolution and that doing so produces strongly beneficial
results.

The remained of this paper is structured as follows. Section 2 in-
troduces some background of applying NE to evolving the TFs of
ANNE . Section 3 describes the investigations which were undertaken
using NE to evolve TFs, with the results given in Section 4. Finally
Section 5 discusses the overall findings with final conclusions given
in Section 6.

2 Background

There are vast number of ANN TFs found in the literature [6]. How-
ever, the majority of NE implementations only evolve homogeneous
ANN:Ss of logistic functions or Gaussian functions; which have both
been shown capable of universal approximation; [7] and [20] respec-
tively. Of those which do evolve heterogeneous ANNSs there are two
main methods.

The first method selects the TF of each neuron from a predeter-
mined list of TFs. Training methods which use this method include
General Neural Networks (GNN) [11]; which randomly adds or re-
moves logistic or Gaussian TFs using an evolutionary programming
method. GNN is also a hybrid approach which makes use of back
propagation during training. Other NE methods which select specific
TFs for each neuron include Parallel Distributed Genetic Program-
ming (PDGP) [21], a modified Hierarchical Co-evolutionary Genetic
Algorithm (HCGA2) [34] and Cartesian Genetic Programming of
Artificial Neural Networks (CGPANN) [8, 29]. These methods use
genes to encode which TF is used by each neuron. These genes are
then subject to mutation and/or crossover during evolution.

The second way in which NE can optimise neuron TFs is to use
TFs which are described by a number of parameters [6]. The training
methods then optimises these parameters for each individual neuron.
A simple version of this technique has been used by CGPANN [13];
where the widths of Gaussian functions were optimised for each neu-
ron. Again the parameter associated with each neuron was encoded
in the chromosome by the addition of an extra gene for each neuron.



A more complex version of this method was used in [2] where each
neuron’s TF was itself an evolved Genetic Program. This method
allowed for an almost limitless variations of TFs. Another exam-
ple where each neuron is described by a number of genes, is state-
enhanced neural networks [19], where the dynamics of each neuron
are evolved. These state-enhanced neural network exhibit memory
which can be utilised on partly observable Markov decision tasks.

Up until now however there has been little research which empir-
ically and rigorously investigates if the ability for NE to evolve het-
erogeneous ANNS actually provides any benefit. This is important
research as if it is shown to be beneficial it could easily be adopted
by other NE methods; as the described methods just require an addi-
tional gene(s) per neuron. As discussed there are two ways in which
NE can evolve TFs: 1) by choosing the TF of each neuron from a pre-
determined list or 2) by optimising parameters associated with each
individual neuron. Both of these methods are investigated here using
two NE strategies and compared to evolving regular homogeneous
ANNE.

3 Investigation

The investigation presented in this paper takes three parts. The first
is to identify if the choice of TF impacts on the effectiveness of NE
when using homogeneous ANNs. The second investigates allowing
NE to select each neuron’s TF from a predetermined list. The third
investigates using NE to optimise parameters associated with each
neuron’s TF. It would also be possible to use NE to evolve ANNs
with a range of TFs each of which had separate parameters to be
optimised; but this was not undertaken here.

The remainder of this section introduces the NE methods em-
ployed by the investigation, the TFs made available and the bench-
marks used.

3.1 NeuroEvolutionary Strategies

In order to undertake the described experiments, two NE methods
were used; this is to ensure that any conclusions are not specific to
a particular type of NE. The chosen NE methods are Conventional
NeuroEvolution (CNE) and Cartesian Genetic Programming of Arti-
ficial Neural Networks (CGPANN). CNE is the simplest (and oldest)
form of NE and only evolves connection weights of fixed topology
networks. CGPANN is a more complex NE method which evolves
both the weights and topology of ANNs. These two NE methods rep-
resent the two main types of NE; those which evolve only connection
weights and those which evolve connection weights and topology®.

3.1.1 Conventional NeuroEvolution

CNE [23] operates by storing the connection weights of a fixed topol-
ogy network as an array of floating point numbers; each within a
range specified by the user. Each of these arrays represents a chro-
mosome. Mutation is implemented by selecting a new random weight
value for each gene (weight) with a given probability. CNE is ex-
tended here to be capable of evolving each neuron’s TF by the inclu-
sion of an additional gene per neuron. These TF genes can either be
used as an index in a look-up-table of TFs, or as a parameter value
to be used by each neuron’s TF. As CNE uses fixed topologies, this
topology must be selected in advanced by the user.
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3.1.2  Cartesian Genetic Programming of Artificial Neural
Networks

CGPANN [8, 29] is the application of Cartesian Genetic Program-
ming (CGP) to the evolution of ANNs. CGP [18, 17] is a form of
Genetic Programming (GP) which represents computational struc-
tures as a directed graph of nodes indexed by Cartesian coordinates.
CGP does not suffer from bloat [15, 31]; an Achilles heel of many
GP methods [25]. CGP chromosomes also contain non-functioning
genes enabling neutral genetic drift during evolution [33, 38]. CGP
typically evolves acyclic networks but can also be easily adapted
to evolve cyclic or recurrent networks. CGP typically uses point or
probabilistic mutation and no crossover. CGP is easily applied to
ANNSs [8, 29] by the inclusion of connection weight genes and by
using TFs suited to ANNs. CGPANN has all of the benefits of CGP
and is a NE training method which can evolve the weights, topology
[30] and TFs of ANNs. Although CGP freely evolves topology, it is
required that the user specifies a maximum network size. This could
be considered a drawback, but overestimating the required number
of nodes has been shown to be highly beneficial for CGP [16]. Sim-
ilarly, a maximum neuron arity must be specified, however, the arity
of each neuron can be lower than this maximum [29]. This occurs
when the chromosome describes two neurons being connected by
two or more connections. In this case, multiple connections between
two neurons are equivalent to one connection; with the weight value
being the sum of the individual connection weights.

It is important to note that the types of ANN created using
CGPANN are unconventional and often cannot be described in terms
of layers and nodes per layer. Figure 1 gives an example of the type
of ANN which can be created using CGPANN. It can be seen that
the neuron inputs are highly unrestrained; they can connect to any
previous neuron in the network. It can also be seen that the arity of
each neuron can vary. Additionally any neuron can be used as an out-
put; including input neurons. Figure 1 demonstrates that when using
NE to optimise topology, evolution is capable of utilising topologies
which would be unlikely to be considered by a human designer.

Figure 1. Depiction of the types of ANN created using CGPANN.

3.2 Transfer Functions

The TFs used for the first two parts of the investigation are the Heav-
iside step function, Equation 1, the Gaussian function, Equation 2,
and the logistic function*, Equation 3. Each of these TFs is shown

4 The logistic function is often referred to as the sigmoid function in the ANN
literature. In fact the term sigmoid function refers to any function which is
‘S’ shaped. The logistic function is therefore a specific type of sigmoid
function along with other functions including the Gompertz function.



graphically in Figure 2. These particular TFs were selected as they
are the most commonly used by ANNS.

As can be seen in Equations 2 and 3, the Gaussian and logistic
function have been given in a form which contains a ¢ variable.
Where o is set as one for the typical form of these TFs. When using
NE to evolve parameters associated with each neuron, the o value
can be evolved or optimised. Figures 3 and 4 show the Gaussian and
logistic function respectively for a range of o values.
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Figure 2. Form left to right: Heaviside step function, Gaussian function
and the logistic function. With o = 1 for the Gaussian and logistic functions.
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Figure 3. Variable Gaussian function. From left to right o = 1,2 and 3.
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Figure 4. Variable logistic function. From left to right o = 1,2 and 3.

3.3 Benchmarks

In order to draw strong conclusions regarding whether it is benefi-
cial to evolve TFs, it is necessary to examine its effectiveness on a

wide range of benchmarks. In this paper five benchmarks were em-
ployed. The chosen benchmarks mainly include supervised learning
classification tasks, a common application of ANNs, but also include
a reinforcement learning control task (ball throwing).

Despite many of the described benchmarks being classification
tasks, they each use their own type of fitness function. Although
this adds complexity, the fitness functions are those typically used
with these benchmarks. This is done to ensure the standardised use
of these benchmarks; which is important when comparing machine
learning methods.

3.3.1 Ball Throwing

The ball throwing benchmark [9] is a reinforcement learning control
task. The task is to design a controller for a driven arm so as to throw
aball a distance of > 9.5 m. A depiction of the task is given in Figure
5, with the equations describing the dynamics of the arm given in
Equations 4 and 5; symbol definitions given in Table 1. The model is
simulated using Euler integration with a time step of 0.01 s for 3000
time steps. The control system has two inputs 6 and w and outputs
two values 1" and whether or not to release the ball. The inputs to
the controller are linearly scaled from 47 /2 and +5 rad/s to a [0,1]
range for 6 and w respectively. The first output of the controller sets
the torque applied to the arm and is linearly mapped to a [—5,5] N
range. The ball is released if the second output exceeds a threshold
of 0.5. Once the ball is released, Newtonian mechanics are used to
calculate the distance the ball is thrown (d) which is then used as the
fitness value.

Figure 5. Depiction of the ball throwing benchmark.
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Table 1. Ball throwing symbol definitions with commonly used values.
Symbol  Description Value
0 The arm angle — 5, 5lrad
w The arms angular Velocity
c Friction constant 2,551
l Arm length 2m
g Gravity 9.81ms—2
m Ball mass 0.1kg
T Torque applied to arm [-5,5]Nm




3.3.2 Full Adder

The full adder benchmark is the task of implementing a full adder
circuit using an ANN. The ANN has three inputs (two input bits and
a carry bit) and two outputs (one for the sum bit and the other for the
carry out). Each output is decoded as a ‘1’ if > 0.5, otherwise it is
decoded as a ‘0’. The fitness value assigned to each chromosome is
the number of correct output bits generated after every possible input
pattern has been applied; see Table 2. This results in a maximum
fitness of sixteen.

Table 2. Full Adder truth table.

A B Cin | Sum Cout
0 0 0 0 0
0o 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

3.3.3 Monks Problem 1

The Monks Problems [28] are a set of three classification bench-
marks intended for comparing learning algorithms. The classification
tasks are based on the appearance of robots which are described by
six attributes, each with a range of values; see Table 3. Only the first
classification task is used here, where a robot belongs to a class if
head_shape = body_shape OR jacket_color = red. The task uses 124
of the possible 432 combinations for the training set and the remain-
der for the testing set. The implementation commonly used by ANN
is to assign each value of each attribute its own input to the network;
totaling seventeen inputs. Each of these inputs is set as ‘17 if the
particular attributes value is present and as ‘0’ otherwise. The ANN
classifies each sample as belonging to the class if the single ANN
output is > 0.5. The target fitness is zero percent classification error.

Table 3. Monks Problem Robot Descriptions.

Description Attributes
head_shape round, square, octagon
body_shape round, square, octagon
is_smiling yes, no
holding sword, balloon, flag
jacket_color red, yellow, green, blue
has_tie yes, no

3.3.4 Two Spirals

The two spirals classification benchmarks was created in the 1980s
and was originally posted on a connectionist mailing list by Alexis
Wieland [3]. The benchmarks consists of 194 data points describing
samples taken from two spirals in Cartesian space; see Figure 6. The
task is to classify to which spiral each sample belongs using only the
(z,y) Cartesian coordinates. The target fitness is zero miss classifi-
cations. The ANN comprises of two inputs for the (z,y) Cartesian
coordinates of each sample, and one output. when the output value is
< 0.5 it is interpreted as one class and > 0.5 as the other.
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Figure 6. Depiction of the Two Spiral Classification Benchmark.

3.3.5 Probenl: Cancerl

The Cancerl dataset’ is a classification task taken from the Proben1
document [22]. The dataset was originally constructed at the Univer-
sity of Wisconsin Hospital [12]. Each sample in the dataset describes
nine values, recorded by a surgeon using fine needle aspiration, of
a tumour located in the breast of patients. Each sample is labeled
with two mutually exclusive flags, benign and malignant, indicating
the tumour type. All of the values are scaled into a [0, 1] range. The
dataset contains 699 samples, 65.5% of which represent benign tu-
mours. The first 525 samples are used as the training set with the
remainder used for the testing set. The fitness assigned to each chro-
mosome is the squared error percentage, Equation 6. Where 0,,in
and Omae are the minimum and maximum output values form the
ANN, N is the number of outputs from the ANN, P is the number
of training examples, o,; are the actual output values from the ANN
and ¢,; are the target outputs. Therefore the optimum corresponds to
a squared percentage error equal to zero.

P N
_ Omazxz — Omin . 2
FE =100- v pgzl i:E l(opz - tpz) (6)

4 Results

Three experiments are presented here which investigate the influence
of TFs when using NE to train ANNs. All of the results presented are
taken from fifty repeated runs. Each run was terminated after 1000
generations, all used a (1 + 4)-ES, 3% probabilistic mutation® and
connection weights in the range +5. It should be noted that all of
the results presented could likely be improved given more genera-
tions and are not representative of the maximum ability of any of
the employed methods. When using CNE, three hidden layers were
used each containing ten neurons; plus one input layer and one output
layer. The arity of each neuron was such that the ANN was fully con-
nected between layers. When using CGPANN the maximum number
of nodes was set as thirty each with a maximum arity of ten.

Where appropriate, the results are compared using the non-
parametric two sided Mann-Whitney U-test and the effect size [32]
statistics. A U-test value of < 0.05 indicates that the difference be-
tween two datasets is statistically significant. The effect size value

5 The ‘1’ in ‘Cancer]’ refers to the permutation of the dataset; see [22].
6 Where probabilistic mutation changes each gene to a new valid value with
a given probability.



shows the important of this difference considering the spread of the
data; with values > 0.56 showing small importance, > 0.64 medium
importance and > (.71 large importance. Therefore if a comparison
between results is shown to be statically significant with a medium or
large effect size, then we can be reasonably sure that any difference is
not due to under sampling and that that the difference is significantly
large.

4.1 Experiment 1 - Homogeneous Networks

In homogeneous ANNs the TF used by each neuron is the same,
whereas in heterogeneous ANNSs the network uses different types of
TF for different neurons. The first experiment identifies whether, and
to what extent, the choice of TF impacts on the effectiveness of train-
ing homogeneous ANN using NE. As previously discussed, the three
TFs used for this investigation are the Heaviside step, Gaussian and
logistic functions; see Section 3.2.

The average fitness achieved when using each TF is given for the
five benchmarks in Tables 4 and 5; when using CNE and CGPANN
respectively. The average fitness value is given in bold if it represents
the best fitness for that benchmark; indicating the most suitable TF
for that benchmark. When appropriate, the fitness is given for the
training and testing sets. Where the testing fitness is the average fit-
ness achieved by each of the fifty runs on the testing set after training
on the training set is complete. The statistical significance between
the fitnesses achieved using each TF are given in Tables 6 and 7;
when using CNE and CGPANN respectively. When the difference
is statistically significant the value is given in bold. The effect size
of the differences between the fitnesses are given in Tables 8 and 9;
when using CNE and CGPANN respectively. When the effect size is
of medium or grater importance the value is given in bold.

From the results given in Tables 4 and 5 it can be seen, for both
CNE and CGPANN, that the choice of TF has a large impact on the
effectiveness of NE. Additionally, in the majority of cases these dif-
ferences are shown to be statistically significant and with a medium
or large effect size. This confirms that the choice of TF has a large
impact on the effectiveness of NE. Interestingly the most suitable TF
was often dependant on the NE training method used. Interestingly
again, for the classification tasks with testing sets, the best TF for
training error percentage was not always the best for generalisation.

Table 4. Average fitness of homogeneous ANN using different TFs trained

using CNE.

Benchmark Step  Gaussian  Logistic | Average
Ball Throwing 5.63 6.41 5.57 5.87
Full Adder 16.00 15.92 15.86 15.93
Monks Problem 1 Train 9.82 27.65 11.03 16.17
Monks Problem 1 Test 27.98 43.16 25.87 32.34
Two Spirals 70.00 56.54 81.52 96.35
Probenl: Cancer Train 10.50 5.44 3.35 6.43
Probenl: Cancer Test 14.44 7.49 3.54 8.49

Table 5. Average fitness of homogeneous ANN using different TFs trained

using CGPANN.

Benchmark Step  Gaussian  Logistic | Average
Ball Throwing 9.34 7.34 5.80 7.49
Full Adder 15.94 15.40 15.78 15.71
Monks Problem 1 Train | 10.71 15.27 12.72 12.90
Monks Problem 1 Test 13.44 21.93 18.79 18.05
Two Spirals 67.42 66.36 80.64 71.47
Probenl: Cancer Train 2.16 2.55 2.50 2.40
Probenl: Cancer Test 2.71 2.74 2.09 2.51

Table 6. Statistical significance between the CNE results given in Table 4.

Benchmark Step-Gauss ~ Step-Log  Gauss-Log
Ball Throwing 3.55E-1 9.55E-15 4.68E-1
Full Adder 4.33E-2 6.49E-3 3.43E-1
Monks Problem 1 Train 6.41E-18 3.81E-2 7.10E-18
Monks Problem 1 Test 6.92E-18 3.34E-2 6.94E-18
Two Spirals 241E-17 6.86E-18 4.94E-18
Probenl: Cancer Train 1.72E-14 6.34E-18 3.54E-10
Probenl: Cancer Test 2.26E-13 6.19E-18 1.49E-11

Table 7. Statistical significance between the CGPANN results given in

Table 5.
Benchmark Step-Gauss  Step-Log  Gauss-Log

Ball Throwing 4.09E-10 2.06E-13 1.22E-1

Full Adder 1.39E-4 1.01E-1 1.52E-2
Monks Problem 1 Train 6.92E-3 2.12E-2 4.66E-2
Monks Problem 1 Test 1.75E-5 1.02E-2 9.30E-3
Two Spirals 3.14E-1 3.83E-17 2.53E-17
Probenl: Cancer Train 7.12E-7 5.07E-7 7.91E-1
Probenl: Cancer Test 8.99E-1 6.51E-3 2.85E-3

Table 8. Effect Size between the CNE results given in Table 4.

Benchmark Step-Gauss ~ Step-Log  Gauss-Log

Ball Throwing 0.553 0.940 0.542

Full Adder 0.54 0.570 0.530

Monks Problem 1 Train ~1 0.620 0.999
Monks Problem 1 Test ~1 0.624 ~1
Two Spirals 0.991 0.998 ~1

Probenl: Cancer Train 0.945 ~1 0.863

Probenl: Cancer Test 0.925 ~1 0.890

Table 9. Effect Size between the CGPANN results given in Table 5.

Benchmark Step-Gauss ~ Step-Log  Gauss-Log
Ball Throwing 0.863 0.912 0.587
Full Adder 0.657 0.552 0.608
Monks Problem 1 Train 2.85E-3 0.632 0.615
Monks Problem 1 Test 2.85E-3 0.647 0.649
Two Spirals 0.558 0.988 0.990
Probenl: Cancer Train 2.85E-3 0.787 0.571
Probenl: Cancer Test 0.507 0.655 0.669




4.2 Experiment 2 - Heterogeneous Networks

The second experiment identifies if allowing NE to select the TF for
each neuron from a predetermined list is beneficial; and if so to what
extent. Evolving the TF used by each neuron is considered beneficial
if the result is better than the average of using each TF individually.
This is chosen because when approaching a new task it not generally
known which TF would be most suited; therefore a TF would have to
be selected arbitrarily. Here the need to make this choice is removed,
and hence it should be considered beneficial if it beats the average
random choice. The average fitnesses of using each TF individually
for the five benchmarks are given in Tables 4 and 5 for CNE and
CGPANN respectively.

The average fitnesses achieved when evolving heterogeneous
ANN are given in Tables 10 and 11 for CNE and CGPANN respec-
tively. The results are given in bold if the fitness is better that the
average of using each TF individually. The percentage of neurons
which use each TF is also given in Tables 10 and 11; this is only
for the active nodes in the CGPANN case. No statistical analysis can
be undertaken for this experiment as the comparison is against the
average result of using each TF individually.

As can be seen in Tables 10 and 11, in the majority of cases
evolving heterogeneous ANNs outperformed the average result of
evolving homogeneous ANNSs. This indicates that evolving hetero-
geneous ANNSs is typically a better strategy than evolving homoge-
neous ANN. This holds unless the user knows in advance which TF
is most suited to a given task; in which case that TF should be used.

Table 10. Average fitness of heterogeneous ANN trained using CNE. The
percentage of neurons which used each TF is also given.

Benchmark Train Test Step Gaussian ~ Logistic
Ball Throwing 8.83 - 36.0% 33.1% 30.9%
Full Adder 16.00 - 32.4% 34.1% 33.5%
Monks Problem 1 | 16.87  33.69 | 33.3% 31.5% 35.2%
Two Spirals 63.46 - 31.5% 35.2% 33.4%
Probenl: Cancer 3.87 516 | 31.8% 32.2% 36.0%

Table 11.  Average fitness of heterogeneous ANN trained using CGPANN.
The percentage of neurons which used each TF is also CGPANN.

Benchmark Train Test Step Gaussian  Logistic
Ball Throwing 8.90 - 35.5% 32.6% 31.9%
Full Adder 15.68 - 32.0% 37.9% 30.1%
Monks Problem 1 | 11.02  16.72 | 29.4% 34.8% 35.9%
Two Spirals 70.24 - 32.6% 35.4% 32.0%
Probenl: Cancer 2.33 2.69 | 30.9% 32.5% 36.6%

4.3 Experiment 3 - Evolving Transfer Function
Parameters

The third experiment identifies if optimising parameters associated
with each neuron is beneficial for NE. As discussed, the parameters
to be optimised vary the shape of the Gaussian and logistic functions;
see Section 3.2. In each case the ANNs use a fixed TF, Gaussian or
logistic, but a parameter describing the shape of each neuron’s TF
is optimised or evolved. Here the parameter values for each TF is
limited to the values 1, 2, or 3, see Equations 2 and 3; but this is not
a requirement of the method.

Evolving parameters associated with each neuron will be consid-
ered beneficial if it produces stronger results than the use of the non-
parametrised counterpart e.g. if variable Gaussian produces stronger
results than the standard Gaussian TF.

The results of using variable Gaussian and variable logistic func-
tions on the five benchmarks are given in Tables 12 and 13 respec-
tively when using CNE. Similarly Tables 14 and 15 give the results
when using CGPANN. In all cases the results are compared to those
obtained for the non-variable form of the function. In the given Ta-
bles, a bold fitness value indicates that the variable TF performed
better than the non-variable form. Additionally, bold values for the
the U-test and effect size indicate statistical significance and a mean-
ingful difference respectively. For instance, if the fitness, U-test and
effect size values are all given in bold then the variable TF is shown to
outperform the non-variable counterpart. If however the fitness value
is not bold, but the U-test and effect size values are, then this shows
that the non-variable TF outperformed the variable counterpart. If ei-
ther of the U-test or effect size values are not bold the the difference
between the two forms of TF is considered insignificant.

It can be seen in Tables 12-15, that in the majority of cases, the
variable version of the TF outperformed the non-variable form. Ad-
ditionally, many instances where the variable form is superior are
also shown to be statistically significance with a medium to large
effect size. Only three of the twenty cases show the non-variable
form outperforming the variable form with statistical significance
and medium to large effect size. Seven of the twenty cases showed
the variable form to outperform the non-variable form with statisti-
cal significance and a medium to large effect size. The remaining ten
cases showed no significant difference between the variable and the
non-variable TFs. Therefore using variable TFs is shown to be often
beneficial and rarely worse. Interestingly, the variable form of the
TFs were shown to be more beneficial for CNE than CGPANN. In
five of the ten cases which used CNE, the variable TFs outperformed
the non-variable TFs, compared to only two out of the ten cases for
CGPANN. The spread of improvement between Gaussian TFs and
the logistic TFs was roughly even; for the Gaussian TF three of the
twenty cases found the variable form to be more beneficial whereas
for the logistic TF this was four of the twenty cases.

Table 12. Average fitness of ANNSs using the variable Gaussian TF trained
using CNE.

Benchmark Gaussian_Var U-test Effect Size
Ball Throwing 8.15 2.66E-7 0.799
Full Adder 15.96 4.07E-1 0.520
Monks Problem 1 Train 26.24 2.18E-2 0.633
Monks Problem 1 Test 41.99 9.58E-3 0.650
Two Spirals 66.26 6.76E-12 0.898
Probenl: Cancer Train 3.09 5.28E-12 0.900
Probenl: Cancer Test 3.53 2.44E-11 0.886

Table 13.  Average fitness of ANNSs using the variable logistic TF trained
using CNE.

Benchmark Logistic_Var U-test Effect Size
Ball Throwing 6.21 6.79E-6 0.744
Full Adder 16.00 6.49E-3 0.570
Monks Problem 1 Train 10.45 3.72E-1 0.552
Monks Problem 1 Test 27.00 1.37E-1 0.586
Two Spirals 74.28 3.74E-16 0.970
Probenl: Cancer Train 3.89 2.94E-3 0.672
Probenl: Cancer Test 4.79 1.58E-4 0.718




Table 14. Average fitness of ANNSs using the variable Gaussian TF trained
using CGPANN.

Benchmark Gaussian_Var U-test Effect Size
Ball Throwing 7.62 2.21E-1 0.571
Full Adder 15.72 6.50E-2 0.586
Monks Problem 1 Train 15.26 8.21E-1 0.513
Monks Problem 1 Test 21.59 5.14E-1 0.538
Two Spirals 69.50 2.77E-3 0.673
Probenl: Cancer Train 2.48 5.01E-1 0.538
Probenl: Cancer Test 2.31 5.71E-2 0.608

Table 15. Average fitness of ANNSs using the variable logistic TF trained
using CGPANN.

Benchmark Logistic_Var U-test Effect Size
Ball Throwing 7.82 2.20E-7 0.766
Full Adder 15.74 7.76E-1 0.511
Monks Problem 1 Train 10.07 3.65E-2 0.621
Monks Problem 1 Test 17.26 1.70E-1 0.579
Two Spirals 75.60 2.37E-8 0.823
Probenl: Cancer Train 2.42 1.01E-1 0.592
Probenl: Cancer Test 2.28 2.77E-1 0.561

5 Discussion

The results presented for the first experiment demonstrate that the
choice of TF has a large impact on the effectiveness of NE. This is
an intuitive result as it is likely that particular TFs are more or less
suited suited to given tasks; this accords with the ‘No Free Lunch’
theorem [36]. However, although intuitive, it is a significant result as
auser is unlikely to know, in advance of training, which TFs are most
suited for a given task. The user must therefore except possibly poor
results, or repeat the learning process using a range of TFs.

Another interesting result from the first experiment is that, in the
majority of cases, the Heaviside step function was found to be the
most effective TF. The significantly more popular logistic function
was found to be the most effective TF in only one case; comparing
the training fitness values for the classification tasks. The step func-
tion was the original TF used by the McCulloch and Pitts neuron
models [14]. The fact that the step function is incompatible with the
back propagation algorithm, and is only suited to tasks with binary
outputs, is the likely reason why other TFs have been favoured. Here,
however, it has been shown that when using NE the Heaviside step
function is still a suitable TF for modern day ANNs; provided the
task is compatible with binary outputs.

The second experiment demonstrated that allowing NE to select
the TF of each neuron provided a better training method than the
average of using homogeneous ANNSs of each individual TF. This
is significant because, as the first experiment shows, selecting the
wrong TF for homogeneous networks has a large impact on the ef-
fectiveness of the final ANN. This coupled with the fact there is no
way of knowing which TF will be most suited for a given task before
training begins, puts homogeneous ANN at a strong disadvantage.
This is an important result for NE as the addition of a gene describ-
ing the TF used by each neuron is probably compatible with all NE
methods. The result may even be strengthened by the inclusion of
other TFs not considered here. Also, as NE places no restrictions on
the types of TFs used, the range of possible TF is limitless.

A further result from the second experiment concerns the percent-
age of neurons which used each type of TF in the evolved heteroge-
neous ANNS. Interestingly, it was never the case that one type of TF
strongly dominated the network; which would have indicated that it
was the TF evolution found most suited toward the given task. There
was, however, reasonable variation in the percentages of each type of

TF used; showing that evolution was providing some form of pres-
sure to use a particular type of TF i.e. it was not simply random. It
could also be the case that many of the neurons which used a par-
ticular type of TF also used connection weights small in magnitude.
For instance, if many of the neurons which used the logistic func-
tion also used connections weights which approached zero, then it
would be clear that evolution had not found the logistic function use-
ful towards the given task. However the magnitude of the connection
weight were not considered here.

The third experiment demonstrated that, in the majority of cases,
using NE to optimise parameters associated with each neuron pro-
vided either a better training method or had no significant effect com-
pared to using using non parametrised TFs. This is also an important
result as the the inclusion of an additional gene (or genes) which alter
the characteristics of each neuron’s TF is again probably compatible
with all NE methods.

A further result form the third experiment was that CNE benefited
more from variable TFs than CGPANN. This is interesting as the
main difference between CNE and CGPANN is that CGPANN can
evolve topology as well as connection weights. This could indicate
that there is some from of interaction between evolving topology and
evolving TFs. This interaction is likely highly complex.

This paper used a very limited method for allowing NE to op-
timise parameters associated with each neuron; each neuron had a
single parameter and the parameter value was limited to 1,2 or 3. It
does however demonstrate the concept of optimising individual pa-
rameters for each neuron and, even in this this simple form, showed it
to be advantageous. Further research should therefore allow for more
complex TFs described by multiple parameters and placing fewer re-
straints on the values each parameter can take; such as in [2]. Addi-
tional further research could involve a combination of heterogeneous
ANN where each neuron also has parameters to be optimised.

6 Conclusion

The use of NE to optimise the weights and topology of ANNs is well
established and offers a number of advantages over traditional train-
ing methods; such as back propagation. However, the use of NE to
optimise the TFs employed by each neuron has been so far under
utilised. This paper has demonstrated the use of two, non mutually
exclusive, methods for allowing NE to optimise each neuron’s TF.
That is, selecting each neuron’s TF from a predetermined list of TFs
or by optimising parameters associated with each neuron. This paper
has also shown that the effectiveness of using NE to train homoge-
neous ANNS is highly dependent on the selected TF. Using NE to
optimise each neuron’s TF has been empirically demonstrated to al-
leviate this issue.

The significance of the results presented in this paper are height-
ened by the fact that all NE methods are probably compatible with
the two methods described. That is many NE method could benefit
from evolving heterogeneous ANNS.
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