
Pāṇini grammar is
the earliest known computing language

John Kadvany1

Abstract. Pāṇini’s fourth (?) century BCE Sanskrit grammar
uses rewrite rules guided by an explicit and formal
metalanguage. The metalanguage makes extensive use of
auxiliary markers, in the form of Sanskrit phonemes, to control
grammatical derivations. The method of auxiliary markers was
rediscovered by Emil Post in the 1920s and shown capable of
representing universal computation. The same potential
computational strength of Pāṇini’s metalanguage follows as a
consequence. Pāṇini’s formal achievement is philosophically
distinctive as his grammar is constructed as an extension of
spoken Sanskrit, in contrast to the implicit inscription of
contemporary formalisms.

1 GRAMMAR AND COMPUTATION

For purposes of this paper, ‘computing language’ means a
formal calculus capable of representing universal computation
according to the rules of some formal language whose rules are
explicitly described through a metalanguage. In this sense,
modern machine and high-level programming languages, by
virtue of their formal (meta-)language rules, are computing
languages. So too are the classical models of Post, Turing,
Church, Kleene and others, including Gödel’s formalization of
metamathematics as number theory. Though not ‘programming’
languages intended for machine implementation, the classical
models all succeed by virtue of defining ‘effective procedure’
through a procedure-level formalism which can be then used to
represent all such procedures. Frege’s first-order logic (as
streamlined by Hilbert and Ackermann) may be included here
just because, as recognized by Church and Turing, Gödel’s
number theoretic coding may be translated into the language of
first-order logic (and so showing the valid sentences of first-
order logic to be undecidable). We tend to think of such formal
systems, capable of expressing arbitrary algorithms, as
thoroughly modern, certainly as at least late 19th century
creations. It’s also a modern idea to see how to describe the
derivational rules of a formal language also through the
language, so that object- and metalanguage are one.

But the 19th and early 20th century formalisms for
algorithmic expression are not the earliest such, by about two
millennia. The first computing language – again, for our
purposes, a generic formalism, described through a
metalanguage for representing exact generative symbolic
procedures of any kind – was devised circa 350 BCE by the
Indian grammarian and linguist Pāṇini. The formalism is not
identical with Pāṇini’s Sanskrit grammar, but is a significant part
of it, constituting the grammar’s formidable formal methods.

1 Policy & Decision Science, Menlo Park, California. Email:
john@johnkadvany.com

Those formal methods are allied with perhaps some centuries of
Indian linguistic theory to define the grammar as a whole.

Pāṇini, as put by the late Frits Staal, is the ‘Indian Euclid’
[1]. Parallel to Euclid’s codification of the earliest, if informal,
deductive systems, including proof by contradiction, Pāṇini in
his Sanskrit grammar formulated and applied the world’s first
formal metalanguage for generic symbolic manipulation.
Pāṇini’s basic method was rediscovered in the 1920s and 1930s
by Emil Post through his production/rewrite systems. Post
proved [2], as Pāṇini could not even conceive, that his systems
were capable of universal computation. But then that fact has
also to be true of Pāṇini’s grammar, even as the latter is meant
for computationally modest linguistic derivations and not
calculation nor computation generally.

To a first approximation, Pāṇini’s formal methods, exclusive
of his linguistics, are Post’s, or vice versa. Pāṇini’s grammar has
the further remarkable property, relevant to contemporary
debates in the philosophy of programming languages, that it is
formulated for oral recitation, not inscription; indeed, Pāṇini’s
formalism can be construed as a grammatical generalization of
the spoken Sanskrit object language which the grammar
describes. In this way, Pāṇini’s grammar is in effect the
realization of a computing environment as formally recited
human speech.

This paper provides a sketch of Pāṇini’s grammar and its
metalinguistic technology. By way of historical context, the
grammar is motivated to construct ‘certificates of authenticity’,
so to speak, for Sanskrit expressions, for both scientific and
ideological reasons. Procedural exactness has deep roots in the
habitus of Hindu culture, particularly through older traditions of
ritual theory, through which the earliest Indian linguistic theories
were conceived, including the characterization of grammar as
representing continuous speech (saṃhitā) using artificial discrete
simplifications (pada, [3]). As noted repeatedly by Staal,
language and linguistics had a preeminent scientific role in
ancient India, comparable to geometry and astronomy in Greece,
but with a complementary prestige associated in India with
algorithmic thinking of all kinds. The oldest theoretical
formulations of the topic appear to be those of various so-called
ritual ‘manuals’, guiding explicit ritual design and execution in
the Vedas and elsewhere. Such were the procedural
programming manuals of the time, so to speak.

2 PĀṆINI GRAMMAR
Pāṇini’s grammar has long been recognized by linguists ([4], [5],
[6]) as the first generative grammar in the modern sense, and
capturing Wilhelm von Humboldt’s insight that natural language
productivity expresses the potentially infinite use of finite

means, an insight also expressed by the Indian grammarian
Patañjali (ca. 2nd century BCE, [3]).

Pāṇini’s grammar is organized as are many modern
grammars, and perhaps all formal languages, as a tiered
hierarchy of progressively more powerful representations: the
levels roughly being: sounds to phonemes; phonemes to
morphemes; and morphemes to syntactically well-formed words
and sentences. The grammar includes a great deal of implicit
semantics through its linguistic content and a set of basic
semantical categories used to initiate derivations, as explained
below.

Pāṇini’s goal is to describe the (potentially infinite) spoken
Sanskrit of his time utilizing the generality of a generative
system. Hence Pāṇini has finite sets of what can be thought of
as basic symbols which are: the basic set of Sanskrit phonemes
(Śivasūtras); Sanskrit verbal roots and nominal stems, from
which words and then the all-important Sanskrit compound
words are formed; and, for metalinguistic purposes, additional
auxiliary phonemic markers, used as affixes, to control the
derivation of Sanskrit words and sentences. ‘Derivation’ can be
taken not entirely, but very much, in the modern sense, as rule-
governed, stepwise expression formation. The typical action or
event is to rewrite – or ‘respeak’ – a current expression E with
some modified E .́

The user of the grammar, like the user of a formal proof
system or programming language, will start with some Sanskrit
target word, compound word or sentence in mind as the goal.
The grammar is used constructively, like a spreadsheet, and is
not generally capable of directly ‘testing’ candidate expressions
for grammaticality, though invalid derivations will at some point
fail. Needed roots and stems are ‘user-selected’ to initiate the
derivational process, and because Sanskrit is mostly a free-order
language, like Latin or Old English, the ordering of these
elements is largely irrelevant (through ordering within several
types of compounds can matter).

From this starting point, metalinguistic rules (paribhāṣās – a
term created by the tradition but not used by Pāṇini) are used to
mark roots and stems as having their intended syntactic roles –
using a few simple functional categories which today’s linguists
may characterize as ‘agent’, ‘goal’, ‘patient’, ‘instrument’,
‘location’, ‘source’ etc. While these choices are ‘user-
generated’, a set of metarules, the kāraka rules, list the
categories and rules for using them. As put by Paul Kiparsky,
“Pāṇini’s grammar represents a sentence as a little drama
consisting of an action with different participants, which are
classified into role types call kārakas [which are] roles, or
functions assigned to nominal expressions in relation to a verbal
root” [7].

From this starting point of the kāraka roles and selected
proto-words, Pāṇini’s metalanguage guides the arduous process
of identifying and applying relevant operational rules (vidhi)
which step-wise transform roots and stems into valid Sanskrit
words and sentences, primarily through affixing and
compounding. The proper prioritization, exception-allowing,
rule-blocking and other use of the operational rules is also laid
out by the guiding metarules. The process is comparable to the
formation of an individual, concrete and well-formed program
by the rules of the programming language in which it is
expressed. The ‘output’ then is a single well-formed word or
sentence. All through the process, rule application relies on
considerable expertise, and some subjective judgment, for rule

identification and application. While employing a rigorous
formalism throughout, the organization of rules and their
application is subtle and intricate, as happens with the linguistic
analysis of many natural languages.

However, given that caveat, rule formulation and application
themselves use the modern concepts. First is that of step-wise
derivations, as noted. Then, most importantly, rules are codified
using what we today think of as ‘auxiliary markers’ (or ‘non-
terminals’), simply additional metalinguistic signs whose role is
to control the derivational process: what to do if a stem is
marked as a past tense verb, what to do if a noun is marked as an
instrumental object, how to indicate passive versus active, what
sound adjustments to make for adjacent phonemes, and so forth.
These auxilary markers, called IT, are almost always appended
to intermediate strings as affixes (i.e. as string^affix) and
retained as long as needed, or until the marker is changed or
deleted in the derivation. The term IT derives from the Sanskrit
particle iti, used as a quotation marker, and whose deictic status
is reflected in allied terms such as idam/this, iha/here,
idānīm/now [8] . A derivation concludes with application of
many phonological rules which effectively convert an expression
so that it is ready for speech, particularly by use of sandhi rules
for adjusting adjacent sound forms. As mentioned above, Indian
linguistics long recognized the discrete terms used in their
analysis as abstractions; hence derived expressions required
‘smoothing’ to better approximate empirical speech. The last
auxiliary markers for a set of derived words may be deleted,
resulting in the finished Sanskrit sentence (case endings and
inflections basically dictate sentence structure), akin to a proved
theorem or executed computer program. Alternatively, a set of
final markers may be retained so that, among other uses, words
may be recursively used as components in one of many complex,
and compact, Sanskrit compounds, and whose construction is a
major focus of all Sanskrit linguistics, not only Pāṇini’s.

Here is a sketch of a sentence derivation [9, 10]. Suppose you
want to derive a Sanskrit version of “Devadatta is cooking rice in
a pot with firewood for Yajñadatta”: devadatta odanam
yajñadattāya sthālyām kāṣṭhaiḥ pacati. The kāraka roles chosen
would be the verbal action of cooking, an agent Devadatta, a
patient of the action which is rice, an instrument of firewood, a
location of the pot, and a recipient Yajñadatta of the action. The
kāraka categories are formally defined and regulated by
metarules, and provide a powerful heuristic for constructing a
wide range of sentences. The categories mediate informal
semantic meaning through their functional syntactic role. The
free word-order of Sanskrit means the selection initial stems,
roots or words to associate with kāraka roles can be thought of
as an unordered set: {devadatta, firewood, rice, cooking, pot,
yajñadatta}, i.e. {devadatta, kāsṭha, odana, pac, sthāli,
yajñadatta}. So again, Kiparsky: the grammar is a “pure form of
lexicalism.”

These elements now require rule applications to mark their
assigned kāraka roles and to create new expressions. For
example, the pot is singular and the location of the action, and
that is marked by the suffix –ṅi, producing sthāli-ṅi. The bold
face ṅ represents an auxiliary and non-terminal marker used in
the derivation process, with italicized i being a terminal sound,
and the hyphen indicating concatenation. Similarly, yajñadatta is
the recipient of the action, marked by the suffix –ṅe and yielding
yajñadatta–ṅe. The patient and instrumental roles, for rice and

firewood respectively, can be marked with suffixes not needing
auxiliary markers: odana-am and kāsṭha-bhis.

Derivation of the verb and its inflection for the cooking
action, pac, involves more steps. There is first an assignment of
the present tense using the suffix –laṭ, chosen from a set of l
suffixes (lakāra) including perfect, imperfect, subjunctive,
imperative, and other tenses. The verb can also refer actively to
the agent Devadatta (cooking the rice…), or passively to
Devadatta by focusing on the rice (…cooked by Devadatta), an
example of non-deterministic choice in the derivation. Devadatta
is singular and is cooking for another, leading to the –laṭ suffix
being replaced by –tip. The verb root pac also happens to require
the vowel a between root and suffix, leading to pac-śap-tip. To
now consistently mark the agent Devadatta as actively cooking,
as planned with the active verb and required by the marker tip,
means use of the –su suffix on devadatta. The marked-up roles
lead to {devadatta–su, kāsṭha-bhis, odana-am, pac- śap-tip,
sthāli–ṅi, yajñadatta–ṅe}. An important caveat: each ‘step’
involves several substeps to identify the operational rule which
can actually be applied. Those substeps may involve numerous
cross-references in the grammar or the application of metarules
to resolve rule conflicts, possibly extending across several of the
grammar’s eight ‘books’. Pāṇini’s complex derivations in this
way differ significantly from those found in most modern
formalisms.

Given that, the intermediate expressions can be used to derive
actual words by deletion of non-terminal markers u, ś, p, ṅ, and
derivation of correct terminal sounds through phonological rules.
The derivation is typical in that auxiliary markers are similarly
used throughout the grammar for rule expression and their
application. Sanskrit syntax is already highly governed by case
endings, so this is the basic means by which Pāṇini’s grammar
extends the object language by its, the object language’s, own
means. The systematic role for affixing makes Pāṇini’s
innovation a kind of (meta-) grammaticalization, a linguistic
transformation which is often central to language change
generally [11]. In modern computational theory, the analogous
bootstrapping innovation will be to use rewrite rules to formulate
a metarule for all rewrite rules; or to use Turing machine
grammar to define a universal Turing machine; or as shown by
Gödel, to use number theory to define a metalanguage for its
own derivations; and so forth. The bootstrapping principle also
occurs practically when a programming language like C or
Pascal is used to write its own compiler, with successive
versions accommodating larger swaths of the language. Here,
though, what differs is that we assume the spoken natural
language Sanskrit and its structure to begin with. The object
language is neither a mathematical invention nor is it written, at
least in principle.

3 PĀṆINIAN COMPUTATION

The basic claim then is that Pāṇini’s system is sufficiently
detailed to qualify as the earliest known computing language.
Here are supporting details, along with several caveats. The idea
of metalanguage and object language is, remarkably, fully
understood by Pāṇini, indeed it is the modus operandi for his
approach. The paribhāṣā metarules elaborate how the system is
to be used, which is to apply operational rules to increasingly
transformed symbolic expressions. As stated, and as illustrated

by the example, the principle method to express rules and rule
application is through the auxiliary markers.

That central role for auxiliary markers means, quite simply,
the method of rewrite systems made famous by Emil Post
starting in the 1920s but not recognized through publication until
the 1930s [12]. The method is very much here, with even more
formal rigor than found in Euclid’s derivations.

Pāṇini goes so far as to devise a quite general formulation of a
method he applies repeatedly, especially in his phonological
rules, that of context-sensitive rules. We express those today as,
e.g., A→B /C__D, meaning: replace expression A by B when A
just follows C and D just follows A, with C or D possibly empty
– so deletions can be treated as a kind of replacement. Pāṇini
formulates an equivalent notion of generic string positions and
their roles, perhaps his most elaborate formal construct which is
directly comparable to a modern equivalent. So it’s not possible
to argue that Pāṇini has some serendipitous notion of rewrite
rules; to the contrary, he developed the first expression of one of
the central ideas of the modern theory. The theory of context-
sensitive and related rule types was initiated by Chomsky and
others in the 1950s and building on Post’s ideas.

Here is an illustration of how Pāṇini’s formal terminology
works for a phonological rule [1]. The rule is to replace i by y
when followed by any of nine Sanskrit vowels. That could be
expressed as nine separate rules, but is better codified by a single
rule referring to a right-context D of “all following vowels” (and
null left-context C). Similar replacements u→w, ṛ →r, ḷ →l
occur, again with any following vowel. In modern terms, this
means a summary rule to be codified is the ordered replacement
<i, u, ṛ, ḷ > → <y, v, r, l> when followed by a vowel, meaning a
phoneme from the list {a, i, u, r, l, e, o, ai, au}. This list and
others are coded as sublists in the Śivasūtra phoneme set,
interpreted as being ordered as fourteen separate “rows”.
Sublists of phonemes are identified by auxiliary markers for
“start” and “endpoints”, with those markers skipped or deleted in
the sublist enumeration; that guidance is also spelled out as a
metarule. It’s also worth noting that Pāṇini’s phoneme set, the
Śivasūtras (suggesting deliverance by the god Śiva), while
nominally expressed as a sequence of linear sūtras is apparently
optimally designed to enable its systematic reference to some 42
sublists of vowels, consonants, etc. [13]

So, in the Śivasūtras, ik stands for {i, u, ṛ, ḷ } and ac refers to
{ a, i, u, ṛ , ḷ , e, o, ai, au}, which is the vowel list needed above;
the braces {…} are our written convention. The other list needed
is yaṇ or {y, w, r, l}. A sūtra applies for taking same-sized pairs
of lists as ordered sequences instead of unordered sets; the rule
basically allows the definition of finite mappings between
defined lists.

Given names for desired lists (e.g. ik, ac, yaṇ), the second
step is using them to construct a context-sensitive rule A → B / C
__ D. The challenge then is to define these functional roles for A,
B, C, D. Pāṇini’s solution is to give the lists, through their names
(ik, ac, yaṇ), kāraka case endings in a sūtra statement, and
thereby to grammaticalize the rule. That is, the case endings are
added to the names of the lists, treated as syntactic objects, to
contextually define their roles in stating a context-sensitive rule.

Pāṇini’s artificial case endings are therefore used to express
“in the place of A, substitute B, when after C and D follows”,
using several metarules: genitive case ending marks A as what is
to be substituted; nominative case ending marks B to substitute
for A; ablative case ending marks a preceding segment C;

locative case ending marks a trailing segment D. The context-
sensitive conventions also are used as a master format for sūtra
coding and hence are a consistent clue to their meaning, with
many operational rules framed in sūtra form as AGenitive BNominative
CAblative DLocative

.[7]. In the (well-known) example, the rule leads
to: ik + genitive, yaṇ + nominative, ac + locative, or {ikaḥ, yaṇ,
aci}. When the words are combined in that order, a sound-
changing sandhi rule completes the derivation as iko yaṇ aci.
The rule in effect is a metalinguistic sentence which is
meaningless in Sanskrit proper. That is a remarkable use of
Sanskrit to bootstrap itself into a metalanguage. The construction
is possible because of our ability to consider the Sanskrit object
language as ‘data’ subject to grammatical rules. The expression
of those rules as an extension of Sanskrit speech is a profound
illustration of the role of intentionality in language use, grammar
formulation and, by implication, computation.

The clarity and directness of Pāṇini’s system also comes at
considerable cost. There are thousands of rules and metarules,
organized as eight ‘books’ (Astadādhyāyī). The dependencies
across rules, and the organization of rules into subgroups
controlled by marked ‘headings’, are highly complex. The
system should be thought of as containing a rigorous rewrite
formalism, especially through the metalanguage, but with the
grammar as a whole organized using many intricate linking,
structural and referential devices making Pāṇini’s system sui
generis [9]. Critically, rules are codified as some 4,000 brief and
memorizable sūtras, sometimes wrongly identified with the
grammatical rules themselves.

These mnemonic expressions are decoded and recoded
through the ongoing oral tradition of grammarians, who have
evolved nomenclature and guidelines for stating Pāṇini’s rules in
explicit form, along with examples, variant interpretations and
criticism. Whether Pāṇini’s grammar was originally formulated
without inscriptional aids is unknown, certainly controversial,
and quite doubtful for some [14]. However, even assuming
considerable inscriptional help, the finished product is highly
refined and ready for oral expression by communities of experts.
A comparison is possible to the iterated construction of early
machine and programming languages through their expert
communities of esoteric practice, with the concise formalization
of their work following as a final product. With little
exaggeration, Pāṇini’s grammar itself, both in complexity and
organization, is like a user’s manual for an early operating
system plus a programming language running under it – with
both expressed using a single formalism and using speech as its
phonemic ‘hardware’. The Śivasūtras are indeed organized in
terms of place and type of articulation in the vocal apparatus,
and so realizes language as physiological mechanism.

Let’s return to our main point, regarding the implicit
computing power of Pāṇini’s system. In terms of the techniques
Pāṇini needs and explicitly uses for his linguistic theory, the
‘maximum’ is that of context-sensitive rules. These rules are
already, in the view of some modern linguists [15, 16] overkill
for natural language syntax (compared to a context-free syntax),
which largely is Pāṇini’s scope too. But it is a simple
observation, given the explicitness of Pāṇini’s metalanguage,
that his grammar can be directly extended, using his same
methods of auxiliary markers, to represent any rewrite system
desired [17]. Emil Post’s achievement was to show that it was
just the method of auxiliary markers which could be used to
simulate the derivations of any rewrite system. That is how Post

demonstrates that his production/rewrite systems are equivalent
to the representational power of Turing machines. All the heavy
lifting to define the metalinguistic framework is completed by
Pāṇini. He has just limited his target application to be the
grammatical expressions of spoken Sanskrit. For that, he needs a
complex linguistic theory, and a precise metalanguage for
codifying the grammar of his Sanskrit object language. So the
computing power needed by Pāṇini is not ‘universal’, but he has
put everything in place for just such a computing environment.

4 MEDIA

For Pāṇini that environment was neither a computing device nor
even the inscriptions constituting a proof. The grammar was
meant to be used as oral recitation, notwithstanding our
contemporary written compilations of the Aṣṭādhyāyī (e.g. [9]).
Genuine users of the grammar, which I am not, really should
learn it through oral training and practice with an older
generation, starting preferably in one’s youth to better internalize
correct pronunciation and articulation of object and
metalanguage. Practically, the oral medium makes Sanskrit
derivation hard enough, though it’s been said that the recitation
of the whole grammar, at least in sūtra form, can be completed
in some several hours. So, realistically, extending the grammar
to an oral calculus, as it were, to computations involving
positionally represented numbers and multiplication – a sine qua
non for all computation – is at most a thought-experiment in
‘Pāṇini arithmetic’ – yet not so different from Turing’s thought-
experiment involving symbolic inscription. The thought-
experiment is just to mimic Post’s universal rewrite system in
Pāṇini’s rewrite system, almost by direct translation using some
few new symbols for ‘numbers’, ‘axioms’, ‘proofs’ and other
needed categories and operations.

Here is the linguistic and philosophical point to that exercise.
Because Pāṇini’s system is explicitly designed as an extension of
his Sanskrit object language, we therefore have an example of
universal computation formulated as an extension of a natural
language by its own means. As said above, at a detailed level
this is accomplished via a kind of grammaticalization, but
carried out consciously and purposively, unlike the same process
occuring in historical language change. The great twentieth
century logicians all had to devise their own – logical and
mathematical – versions of the later idea that ‘programs are
data’. That includes Gödel’s number-theoretic coding of number
theory proofs; Post’s canonical rewrite rules; Turing’s universal
machine; Church’s lambda expressions; and so on. The key step
is always to show that a particular formal language can be used
as its own metalanguage – with each such formulation having its
own theoretical importance and claim to fame. Pāṇini precedes
exactly Post in method, of course without Post’s proofs of
comparative computing power, but amazingly, as a natural
language grammar formulated using the same grammatical
devices as the target language, principally affixing and
inflectional changes. Panini saw how the intrinsic resources of
the spoken Sanskrit of his time could themselves be used to
formulate a metalanguage for exact description of Sanskrit as the
object language.

In this way, Pāṇini created the first computing language and
in oral form. In contrast, Turing explicitly uses a thought
experiment involving symbolic inscription, with that media is

implicit in all other modern formalisms and their metaphors (e.g.
Church’s lambda calculus is also a rewrite system). The reason
oral codification was important for Indian linguists is that
Sanskrit speech was ‘the language of gods in the world of men’
[18], with writing even potentially polluting, and Sanskrit also
being the language of ancient Indian science, useful for
transmitting ritual and astronomical knowledge accurately over a
huge land mass.

From a modern perspective, while inscription has undoubted
benefits in objectifying and memorializing natural and artificial
languages, there is a received dogma that computation can be
expressed in any media you like [19, 20], with software
ultimately an abstraction independent of any hardware
implementation. We therefore now have now a real historical
example of just that media freedom, but in human speech, which
along with the gestures of signing, is a primal expressive media,
of natural language, at least for us modern humans [21].
Philosophically, Pāṇini’s example shows that the differences
between natural and artificial computing languages are much
smaller than often thought. Not because natural languages are, or
are close to being, computing languages, but because the
construction of computing languages is apparently just a
continuation of natural language constructions by their own
means [22].

REFERENCES
[1] F. Staal, F. Universals. Chicago: University of Chicago Press (1988).
[2] M. Minsky. Computation: Finite and Infinite Machines. New York:

Prentice-Hall (1967).
[3] F. Staal. Discovering the Vedas: Origins, Mantras, Rituals, Insights.

Kundli, India: Penguin (2008).
[4] L. Bloomfield. Language. London: George Allen and Unwin (1933).
[5] N. Chomsky. Aspects of the Theory of Syntax. Cambridge, MA: MIT

Press (1965).
[6] N. Ostler. Empires of the Word. New York: Harper Collins (2005).
[7] P. Kiparsky. Pāṇinian linguistics. In Encyclopedia of Languages and

Linguistics 2nd ed. K. Brown et al. eds. New York: Elsevier Science
(2005).

[8] F. Staal. The Concept of Metalanguage and its Indian Background.
Journal of Indian Philosophy 3: 315-354 (1975).

 [9] R. N. Sharma. The Aṣṭādhyāyī of Pāṇini I (six volumes):
Introduction to the Aṣṭādhyāyī as a Grammatical Device. New Delhi:
Munshiram Manoharlal (1987) .

[10] B. Gillon. Pāṇini’s Aṣṭādhyāyī and Linguistic Theory. Journal of
Indian Philosophy 35:445-468 (2007).

[11] Hopper, P. and E. Traugott. Grammaticalization (2nd ed.). New
York: Cambridge University Press (2003).

[12] A. Urquhart. Emil Post. In Gabbay, D.M., Woods, J. (eds.)
Handbook of the History of Logic, Volume 5: Logic from Russell to
Church. Amsterdam: North-Holland (2009).

[13] W. Petersen. A mathematical analysis of Pāṇini’s Śivasūtras,
Journal of Logic, Language, and Information 13: 471-489 (2004).

[14] J. Goody. The Interface Between the Written and the Oral. New
York: Cambridge University Press (1987).

[15] P. Culicover. Review of R. Huddleston and G. Pullum (eds.) The
Cambridge English Grammar. Language 80: 127-141 (2004).

[16] G. Pullum. and B. Scholz. Contrasting applications of logic in
natural language syntactic description. Logic, Methodology and
Philosophy of Science: Proceedings of the Twelfth International
Congress. ed. Petr Hájek et al. 481-503 London: King’s College
Publications (2005).

 [17] J. Kadvany. Positional value and linguistic recursion. Journal of
Indian Philosophy 35: 487-520 (2007).

 [18] S. Pollack. The Language of the Gods in the World of Men:
Sanskrit, Culture, and Power in Premodern India. Berkeley:
University of California Press (2006).

[19] B. J. Copeland. What is computation? Synthese 108: 335-359
(1996)

 [20] J. Searle, J. Philosophy in a New Century: Selected Essays. New
York: Cambridge University Press (2008).

 [21] M. Tomasello. Origins of Human Communication. Cambridge,
MA: MIT Press (2008).

[22] M. Tomasello. Constructing A Language: A Usage-Based Theory of
Language Acquisition. Cambridge, MA: Harvard University Press
(2003).

