
Machine Learning within Ableton Live
Giuseppe Torre1

Abstract. This paper presents and describes the features of a new
M4L module for Ableton Live which enables basic gesture tracking
and mapping. The module is based on the gesture-follower patch of
the IRCAM’s FTM library and it makes use of the native capabili-
ties of the Live API. The mapping between the gestures and audible
output is designed within the module and it enables the simultane-
ous control of macro features of the Ableton interface such as clip
selection, volume and panning of the track/s.

1 INTRODUCTION
Machine Learning (ML) toolkits such as Wekinator [11], SARC Eye-
sweb Catalog[3], IRCAM MnM toolbox[4] and OpenCV [8] are be-
tween the most well-known toolkits available to artists and engineers
[2]. Most of these tools have Open Sound Control (OSC) [9] capa-
bilities which allow them to communicate with third-party software
which create and manage the audio/visual elements of the perfor-
mance. The process connecting gestures to audio-visual outputs is
generally dealt with ad hoc algorithms to suits the performance or
the performer’s needs.

The module described in this paper, ML-AL, is based on the IR-
CAM’s MnM toolbox and it exploits the M4L [6] capabilities to di-
rectly interface gesture recognition algorithms with the audio/visual
elements within the software Ableton Live [5]. In that regard the
module does not present a new algorithm or a novel approach in Ma-
chine Learning but rather implements existing technologies within
one popular music software. However, the design of the module of-
fers an approach to the use of gesture tracking algorithms for the dis-
crete control of system’s parameters rather than a continuous sound
generating mechanism and/or continuos controllers.

2 ML-AL FEATURES
The ML-AL module has three sections each of which is dedicated to
a specific task. These are visually separated by the blue vertical lines
as depicted in Fig.1. The sections are:

1. Data-Input: it serves the purpose of retrieving data from a con-
nected device via OSC.

2. Gesture Recognition: it performs gesture recognition analysis on
a user-built gesture dictionary.

3. Mapping: it links the result of the performed gesture analysis to a
series of Ableton Live native functions.

2.1 Data-Input
The data input section receives from any device that can transmit
according to the OSC protocol. In this section the user can decide

1 University of Limerick, Ireland, email: giuseppe.torre@ul.ie

through which port number the communication needs to be estab-
lished. The data needs to be formatted according to the following
OSC address:

• \accxyz: this is the data which will be read by the gesture recog-
nition software for the creation and subsequent anaysis of the ges-
tures. It needs to be a list of three numbers (e.g. the acceleration
readings from a 3-axis accelerometer).

• \1\ push2: The sender device must have a push button which
works as a gate. This push button serves the purpose of clearly
marking beginning and end points of a gesture by letting the data
through when depressed and stopping the data when released.

2.2 Gesture Recognition
The gesture recognition section is based on the gesture-follower ex-
ample patch offered in the IRCAM’s MnM toolkit. This toolkit was
chosen because fully compatible with the M4L package available in
Ableton Live. The patch proved to be a reliable and a ready-made
software that could successfully implement gesture recognition. Fur-
thermore, it is written in Max and this allows for easy manipulation
and addition of user elements. It is important to notice that the patch
is not making explicit use of the time progression features that it en-
ables [1]. Rather, the patch is used as a gesture classifier.

The author acknowledges the limitations that such a system im-
poses. This choice was dictated by privileging artistic needs over
technical possibilities. In particular, machine learning was thought, at
least in this early version of the module, to be useful for the discrete
control of macro elements of a live performance, such as the trigger-
ing of pre-recorded loops, rather then acting upon an eventual sound
generating mechanisms or continuous controllers. This is a strategy
that the authors has found productive in severals other works [10].

2.3 Mapping
The data used for the control of the Ableton interface is the likeliest
number value retrieved by the gesture analysis routine performed by
the gesture recognition section and made available for mapping each
time the push button is released.

The ML-AL module can store up to eighty presets. These presets
can store the start/stop mode of a clip, volume and panning of up to
eight different audio or MIDI Ableton tracks. The likeliest number
value is then used to recall one of these presets on-the-fly.

3 MODE OF USE
The presented module has been tested and interfaced with an iPad
running a custom patch made with TouchOSC and complying with
the specifications outlined in Section 2.1.



Figure 1. A snapshot of the ML-AL module for Ableton Live.

The mode of operation of the module consists of the following
steps:

1. load the module onto a MIDI track.
2. input OSC port number over which to establish the connection

(data-input section)
3. enable ‘Learn’ mode in the gesture recognition section
4. enable ‘start’ (toogle) and perform a gestures.
5. disable ‘start’ (toggle)
6. repeat steps 3 and 4 for as many gestures as you require. Make

sure that to each gesture corresponds a different phrase number.
7. disable ‘Learn’ mode

Before using the module in performance mode, it is required to
store some presets (preferably of equal quantity of the gestures per-
formed during the training steps).

1. create up to eight audio or midi tracks in Ableton Live.
2. import or create as many clip as desired in each track
3. create a combination of playing clips, volume and panning settings

and store these to a preset number (shift+click on one of the circles
in the ML-AL module preset object).

4. repeat step 3

Now the module is ready to be used in performance mode. En-
able start in the Gesture Recognition section and play a gesture. The
gesture number performed, if successfully recognised, will recall the
equivalent preset number.

3.1 Performance Scenario
The ML-AL module was preliminary tested by developing a short
algorithmic process controlled by gestures performed using an iPad..
Four audio tracks were added to the Ableton project and each filled
with two clips with distinct sound properties (high drones, low
drones , granular, irregular percussive patterns). The following con-
figuration was thought as 4-bit resolution system (four tracks by two
clips and with a clip per track always playing) given therefore a to-
tal of sixteen possible combinations of playing clips stored as pre-
sets. The ML-AL module was trained with sixteen different gestures
each of which mapped to a preset number. At performance time, the
module response was fast and with a good rate of accuracy in recog-
nising gestures. A drawback for the system is represented by the ef-
fort required by the user to learn sixteen different gestures. However,
the quality of a live performance is not necessarily measured by the
quantity of gestures performable or performed. The module capa-
bilities, in conjunction with more traditional continuos controllers

(faders) for the manipulation of audio effects, offers already a good
sound palette for performance purposes.

4 CONCLUSION
This paper has presented and described the features of a new M4L
module for Ableton Live which enables basic gesture recognition and
mapping. The module, based on the IRCAM’s MnM toolkit, offers
simple and easy to use mapping of recognised gestures to basic con-
trol parameters available in Ableton Live such as clip selection, vol-
ume and panning settings for up to eight tracks. The module makes
use of a highly efficient gesture recognition algorithm working on a
non-continuos classification method. The mapping algorithm enables
quick recall of Ableton presets so to, for example, control the macro
elements of a performance such as the intervention of scenes and/or a
selected combination of clips. The perceived latency during prelim-
inary testing was found neglegible thus making the module suitable
for live performances. ML-AL is freely available at [7].

REFERENCES
[1] F. Bevilacqua, B. Zamborlin, A. Sypniewski, N. Schnell, F. Guédy, and

N. Rasamimanana, ‘Continuous realtime gesture following and recog-
nition’, in Gesture in Embodied Communication and Human-Computer
Interaction, eds., Stefan Kopp and Ipke Wachsmuth, volume 5934 of
Lecture Notes in Computer Science, 73–84, Springer Berlin Heidelberg,
(2010).

[2] B. Caramiaux and A. Tanaka, ‘Machine Learning of Musical Gestures’,
in Proceeding of New Interface for Musical Expression Conference,
NIME’13, (May 2013 KAIST, Daejeon, Korea,).

[3] Eyesweb Catalog. available at: http://www.somasa.qub.ac.uk/
ngillian/sec.html [accessed 27th of January 2014].

[4] Ircam Ftm. available at: http://ftm.ircam.fr/ [accessed 27th of January
2014].

[5] Ableton Live. available at: https://www.ableton.com/ [accessed 27th of
January 2014].

[6] Max for Live. available at: https://www.ableton.com/en/live/max-
forlive/ [accessed 27th of January 2014].

[7] ML-AL. available at: http://muresearchlab.com/?/softwares/mlal/ [ac-
cessed 27th of January 2014].

[8] OpenCV. available at: http://opencv.org/ [accessed 27th of January
2014].

[9] OpenSoundControl. available at: http://opensoundcontrol.org/ [ac-
cessed 27th of January 2014].

[10] G. Torre, The Design of a New Musical Glove: A Live Performance
Approach, (Ph.D. Thesis) University of Limerick, 2013.

[11] The Wekinator. available at: http://wekinator.cs.princeton.edu/ [ac-
cessed 27th of January 2014].


