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Shape representation: From the Medial Axis
 to the Medial Scaffold

Wave
propagation

Blum, 
Voronoi,

Turing, et al.

Maximal
disks

Blum, Wolter, 
Leyton, Kimia,
Giblin, et al.



  

Context: 1st reconstruct a surface mesh from unorganized 

               points, with a “minimal” set of assumptions: 
             the samples are nearby a “possible” surface 
             (thick volumetric traces not considered here).

Benefit: reconstruction across many types of surfaces.

Study 3D shape with minimal assumptions
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Study shape with minimal assumptions

To find a general approach, applicable to various topologies,

  without assuming strong input constraints, e.g.:
– No surface normal information.

– Unknown topology (with boundary, for a solid, with holes, non-orientable).

– No a priori surface smoothness assumptions.

– Practical sampling condition: non-uniformity, with varying degrees of noise.

– Practical large input size (> millions of points).



  

Outline

Background

Method and some algorithmic details

Applications



  

How: Overview of Our Approach (2D)
Not many clues from the assumed loose input constraints.
• Work on the shape itself to recover the sampling process.

Key ideas: 

• Relate the sampled shape with the underlying (unknown) surface by 
a sequence of shape deformations (growing from samples).

• Represent (2D) shapes by their medial “shock graphs”. [Kimia et al.]

• Handle shock transitions across different shock topologies 
to recover gaps. 



  

How: Sampling / Meshing as Deformations

We consider the removing of a patch from the surface as a Gap Transform.

2D:

Schematic view of sampling: infinitesimal holes grows, remaining are the samples.

3D:



  

How: Sampling / Meshing as Deformations

Special case where input consists only of 
points (in 3D), then the Medial Scaffold 
consists of only:  
   A1

2 Sheets,      A1
3 Curves,       A1

4 Vertices. 

A1
2 Sheet

A1
4 Vertex 

A1
3 Curve



  

How: Sampling / Meshing as Deformations

CVIU 2009, Chang, Fol Leymarie, Kimia.



  

How: Medial Scaffolds for 3D Shapes
A graph structure for the 3D Medial Axis

Classify shock points into 5 general types, 

and organized into a hyper-graph form 

[Giblin&Kimia PAMI’04, Leymarie&Kimia PAMI'07]:

– Shock Sheet: A1
2

– Shock Curves: A1
3 (Axial), A3 (Rib)

– Shock Vertices: A1
4, A1A3

Ak
n: contact (max. ball) at n distinct 
points, each with k+1 degree of 
contact.
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Transitions of the 3D graph structure 

Study the topological events of the graph structure  
under perturbationsperturbations and shape deformationsshape deformations.

Singularity theorySingularity theory (Arnold et al., since the 1990's):
  In 3D, 26 topologically different perestroikas of linear shock waves. 

“Perestroikas of shocks and singularities of minimum functions” 
I. Bogaevsky, 2002.



  

Transitions of the 3D graph structure 

Study the topological events of the graph structure  
under perturbationsperturbations and shape deformationsshape deformations.

Transitions of the MA (Giblin, Kimia, Pollit, PAMI 2009):
Under a 1-parameter family of deformations, only seven transitionsseven transitions are relevant.



  

Transitions of the 3D graph structure 

Study the topological events of the graph structure  
under perturbationsperturbations and shape deformationsshape deformations.

Transitions of the MA:
Under a 1-parameter family of deformations, only seven transitionsseven transitions are relevant.

(protrusion-like, Leymarie, PhD, 2002)A1A3-I



  

Transitions of the 3D graph structure 

Study the topological events of the graph structure  
under perturbationsperturbations and shape deformationsshape deformations.

A1A3-I A1
5 A1

4 A5 A1A3-II A1
2A3-I A1

2A3-II

twisted parabolic gutter parabolic gutter with a bumpsqueezed tube
parallel plane with a bump

Total  of 11 cases for regularization across transitions (M.C. Chang et al.)



  

Transitions of the 3D graph structure 

Study the topological events of the graph structure  
under perturbationsperturbations and shape deformationsshape deformations.

Towards surface regularisations via transitions (Leymarie, Giblin, Kimia, 2004)



  

Transitions of the 3D graph structure 

Study the topological events of the graph structure  
under perturbationsperturbations and shape deformationsshape deformations.

Capture transitions via geodesy on MA (Chang, Kimia, Leymarie, on-going)
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How: Organise/Order Deformations (2D)

Deformation in shape space

BA

NB: A & B share object symmetries. 
Symmetries due to the sampling need 
to be identified. 



  

How: Organise/Order Deformations (3D)
• Recover a mesh (connectivity) structure by using Medial Axis transitions 

modelled via the Medial Scaffold (MS).

– Meshing as shape deformations in the ‘shape space’.

• The Medial Scaffold of a point cloud includes both the symmetries due to 
sampling and the original object symmetries.

– Rank order Medial Scaffold edits (gap transforms) to “segregate” and to 
simulate the recovery of sampling.

Shock Segregation [Leymarie, PhD’03], Surface reconstruction [CVIU'09]

Meshed Surface + 
Organized MA

Object symmetrySampling recovery



  

Algorithmic Method
• Consider Gap Transforms on all A1

3 shock curves in a 
ranked-order fashion: 

– best-first (greedy) with error recovery.

• Cost reflects:
– Likelihood that a shock curve (triangle) represents a surface 

patch.

– Consistency in the local context (neighboring triangles).

– Allowable (local surface patch) topology.

3 Types of A1
3 shock curves (dual Delaunay triangles):

Represented in the MS by “singular shock points” (A1
3-2)

(unlikely to be correct candidate)

A1
3 shock curve

Three A1
2 shock sheets

A1
3-2

G1

G2

G0

A1
3-2 singular 

shock point

G1

G2
G0

G3G1

G2

G0

Type I Type II Type III



  

Algorithmic Method

How we order gap transforms:

• Favor small “compact” triangles.

• Favor recovery in “nice” (simple) areas, e.g., 
away from ridges, corners, necks.

• Favor simple local continuity (similar orientation).

• Favor simple local topologies (2D manifold).

• BUT: allow for error recovery!



  

Ranking Isolated Shock Curves (Triangles)

R: minimum shock radius

dmax: maximum expected triangle, estimated from dmed

Triangle geometry:

Cost: favors small compact triangles 
with large shock radius R.

(Heron’s formula)

(Compactness, Gueziec’s formula, 0<C<1)

The side of smaller shock
radius is more salient.

Surface meshed from confident regions toward the sharp ridge region.

R
R

unbounded



  

Cost Reflecting Local Context & Topology
Cost to reflect smooth continuity of edge-adjacent triangles:

Point data courtesy of Ohtake et al.

Typology of triangles sharing an edge:

Typology of mesh vertex topology



  

Strategy in the Greedy Meshing Process
Problem: Local ambiguous decisions  errors.

Solutions:

• Multi-pass greedy iterations
First construct confident surface triangles without ambiguities.

• Postpone ambiguous decisions
– Delay related candidate Gap Transforms close in rank, until 

additional supportive triangles (built in vicinity) are available.

– Delay potential topology violations.

• Error recovery

– For each Gap Transform, re-evaluate cost of both related 
neighboring (already built) & candidate triangles. 

– If cost of any existing triangle exceeds top candidate, undo its 
Gap Transform.

Queue of
ordered triangles



  

Dealing with sampling quality
Input of non-uniform and low-density sampling:

Response to additive noise:

50% 100% 150%
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From Fine to Coarse Scales



  

Bone shape study



  

3D Tubular & Branching Shapes



  

3D Tubular & Branching Shapes



  

3D Tubular & Branching Shapes



  

3D Convoluted Shapes: Brains



  

3D Shape Matching/Registration



  

3D Shape in Molecular biochemistry

FoldSynth project: Docking
www.foldsynth.com 

http://www.foldsynth.com/
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Next: 3D Shape Deformation

• [Kimia et al.] represent shape as a member of an equivalent class 
(‘shape cell’), each defined as the set of shapes sharing a common 
shock graph (in 3D, Medial Scaffold) topology.

• Link this to Information Models: incorporation of human expert 
knowledge; e.g. in building taxonomies.

• Statistical analysis; definition of classes; distribution of features.

• Combine exterior with interior scaffolds.



  



  

Other open issues:

- Combine or study relations with other existing main 
shape representations based on propagations: Voronoi, 
Morse/Reeb, flow complex, 3D Curve skeletons

- Interactions between 2D and 3D inputs : visual 
inputs/snapshots (2D) versus 3D percepts : no trivial 
correspondence between 2D and 3D medial 
representations (including Voronoi)



  

Other open issues:

- Medial representations directly from intensity fields : 
images, video, 3D medical volumetric data : e.g. work of 
Kovacs et al. on robust symmetries.

- related: using a probabilistic framework or robust 
measures to deal with noisy inputs or sampling obtained 
in sausages (neighborhoods) rather than precisely on 
an outline/surface

- Complexity, proofs of convergences for realistic data 
(not too smooth).


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

