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Implicit vs explicit 
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Discrete 

signal 

sampled 

regularly 

with 

spacing h 

Standard explict finite difference scheme 

An implicit finite 

difference scheme 
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w=4 gives a higher 

approximation order 

for small h. 



A DSP approach to estimating Image Derivatives 
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Implicit finite differences: an example 
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 Non-causal IIR filters in the DSP language 

 Rational (Pade) approximations in Maths 
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A DSP approach to estimating Image Derivatives 
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A 6-order Pade scheme: 

Let us introduce   

 implicit Scharr scheme  w=10/3 

 implicit Bickley scheme  w=4 
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Commonly used discrete gradients & Laplacians 
Rotation-invariant differential quantities (operators) used widely in 

Image Processing and Computer Vision: 

Need for accurate discrete approximations. The standard discrete 

approximations are not sufficiently accurate. 
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Approximation Accuracy and Rotational Invariance 
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(Horn, Robot Vision) 

Optimally rotation-invatiant? 

Two natural questions to ask:  

 Is it possible to achieve a better approximation accuray for the same 

computational cost? 

 Why shuld we assume that the grid spacing (pixel size) h tends to 0? 



Estimating the gradient direction and maginude 
gradient direction error 

Sobel                    Scharr            implicit Scharr       Bickley       implicit Bickley 

gradient magnitude error 

Explicit schemes and their implicit counterparts deliver remarkably 

similar estimates of the gradient direction field.  



Explicit vs. Implicit 

1 0 1
1

0
2 2

1 0 1

w w
x h w

1 1 1

1 1

1

2

1

2

i i i

i i

f w f f
w

f f
h

 

Smoothing introduced by 

[-1 0 1]/2 in x-direction is 

compensated by applying 

[1 w 1]/(w+2) smoothing 

in y-direction 

Smoothing introduced by 

[-1 0 1]/2 in x-direction is 

comensated by applying 

[1 w 1]/(w+2) smoothing 

to the derivative. 

 
Given an explicit scheme and its implicit counterpart, both the schemes 

produce similar estimates of the gradient direction, however the 

implicit scheme does a better job in estimating the gradient magnitude. 



High-resolution schemes 
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S. K. Lele, “Compact finite difference 

schemes with spectral like resolution.” 

Journal of Computational Physics, 1992. 

Lele scheme:  0.5771439, 0.0896406

1.302566, 0.99355, 0.03750245a b c



Fourier-Pade-Galerkin approximations 1 

Space or trigonometric 

polynomials of degree N 
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It gives a system of k+l lnear equations with k+l unknowns.  

In our case, k=3 and l=2. 
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Fourier-Pade-Galerkin approximations 2 
A system of k+l linear equations with k+l unknowns. k=3 and l=2. 
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Fourier-Pade-Galerkin approximations 3 
A system of k+l linear equations with k+l unknowns. k=3 and l=2. 
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Fourier-Pade-Galerkin approximations 4 

Lele scheme 
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Applications: edge detection (Canny edge detection)  



Applications: deblurring Gaussian blur 

, , , ,I x y t I x y t
t

A higly unstable process. 

 The idea is to use a 

discrete Laplacian which 

dumps high frequences 

Restored image 



Applications: unsharp masking 

sharp , , ,I x y I x y I x y

Standard unsharp masking oversharpens high-frequency details  

Implicit filtereing 

does a good job in 

supressing 

oversharpened 

high-frequency 

details  



Implicit 

filtering 
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Stabilized inverse diffusion 

, , low-pass , , , ,hI x y t dt I x y t dt I x y t



Implicit filtering and approximation subdivision 
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Curve subdivision 



Implicit filtering and interpolatory subdivision 
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Dyn-Levin-Gregory: α=0, a=1/16, b=-1/9 

Kobbelt K2 variational subdivision scheme: α=1/6, a=4/3, b=0 



Implicit filtering and interpolatory subdivision 



Implicit subdivision 
Implicit subdivision schemes were introduced by Kobbelt [1996,1998] in the 

case of interpolatory subdivision from a variational standpoint. 

Sabin [2010] does not mention them at all in his book (althought he cited that 

paper of Kobbelt). 

Peters and Reif [2008] devoted to variational subdivision only two sentences 

where the authors acknowledged its existence but wrongly stated that more 

or less nothing was known about the underlying theoretical properties of 

variational subdivision schemes. 



Future research 

Weighted (non-iniform) implicit filtering schems  edge-

aware image filtering (in a hope to beat results of Gastal & 

Oliveira, Siggraph 2011). 

Extending to mesh processing (in a hope to beat results of 

Chuang & Kazhdan, Siggraph 2011). 


