Heterogeneous Volume Modelling and Variable Microstructures

> Speaker: Alexander Pasko Co-authors: Turlif Vilbrandt, Oleg Fryazinov, Pierre-Alain Fayolle, Valery Adzhiev

Bournemouth University-Uformia AS-University of Aizu

UK-Norway-Japan

Geometric Modelling Meeting Seoul 2011

Outline

 Heterogeneous objects modelling Natural and artificial microstructures Problems with surfaces & voxels Using real functions Regular and non-regular procedural microstructures Direct rendering and fabrication

Dragon's secret

Challenge of Nature

Modeling & Fabricating

Heterogeneous objects

- Internal structure with non-uniform volumetric distribution of properties (density, color, transparency, etc.)
 - Entities of different dimensionalities
 - Gradually varying material distribution in CAD/CAM and fabrication
 - Physical simulations, geological and medical modeling and rendering

Natural and artificial microstructures

Problems with surfaces & voxels

- Size and processing time
 100s Mb polygons, >10¹⁰ voxels
- Validity and precision
 - cracks and approximations
- Parameterization and operability
 blends, offsets, deformations
- Manufacturability
 - STL problems are amplified by the geometric complexity of microstructures

Constructive Hypervolume Model

Hypervolume is a multidimensional point set with multiple attributes

$o = (F(X), S_1(X), ..., S_k(X))$

F(X) – FRep of geometry

 $S_i(X)$ – attributes based on FRep

space partitions

Graphical Models, 2001

Function Representation FRep

- Uniform representation of multidimensional point sets as $F(X) \ge 0$
- Function F(X) evaluation procedure
 traversing the construction tree structure
- Leaves: <u>primitives</u>
- Nodes: <u>operations</u> + <u>relations</u>

Visual Computer, 1995

Procedural microstructures

Procedural generation of the defining function F(X) value at the given point such that geometry of the entire microstructure is described as

 $F(X) \ge 0$

Constructive model based on R-functions:

 $f_3 = f_1 \vee_{\alpha} f_2$ for the union;

 $f_3 = f_1 \wedge_{\alpha} f_2$ for the intersection;

Graphical Models, 2011

Regular infinite lattices

Variations of lattices Variable rod thickness Smoothed rods $f_1 \wedge_b f_2 = (f_1 \wedge_\alpha f_2) + \frac{a_0}{1 + \left(\frac{f_1}{a_1}\right)^2 + \left(\frac{f_2}{a_2}\right)^2}$

Combining with a shell

Truncation of a lattice by a solid and union with its shell Blending union between rods and with a shell

Parameterization by distance

Lattice step decreases closer to the surface

Cellular microstructures

Replication of a unit cell with periodic space mapping:

x' = sawtooth(x)

Non-symmetric cell

Symmetric cell

Space-variant structures

Transfinite interpolation between cellular structures

Computer-Aided Design, 2011

Multi-scale nested structures

Filter design

Lattice scaffold for a jaw bone

Initial jaw bone model

Union of lattice with bone shell

Lattice truncated by bone

Jaw bone model by Denis Kravtsov

Porous media

- Basic pore replication
 Distance dependency
 Addisonation
- 3. Adding noise

Direct rendering

Real-time ray-tracing on GPU independent of the microstructure density

Computers & Graphics, 2010

Towards direct fabrication

3D Systems Sinterstation
 ZCorp 3D printer
 Stratasys Dimension

Proprietary protocols

3D prints by the Centro de Tecnologia da Informao, CTI, Brasil

Graded cellular behavior

Auxetic foam by Prof. Norbert Palz Universität der Künste Berlin UDK

Fab@Home HyperFun Printer

Direct output from FRep models
 Too low resolution for microstructures

Direct multimaterial fabrication

Next: gradient volumetric materials

Conclusions

Polygon-free and voxel-free approach to

- Interactive modeling
- Real-time rendering
- Fabrication (ongoing)
- Fitting and analysis (future work)

Step towards procedural multiresolution modeling on micro- and nano-levels with infinite "zoom".