Genetic Algorithm Task

Matthew Clark

Chromosome Structure ch = (g0, g1, g2, g3, g4, g5, g6, g7)

0<= g <=9

Fitness

f(ch) = (g0 + g1) - (g2 + g3) + (g4 + g5) - (g6 + g7)

Maximisation Problem

Find chromosomes with the highest fitness

Scenario

Part I Finding Fitness of Chromosomes

Finding Fitness of Chromosomes

ch1 = (6, 5, 4, 1, 3, 5, 3, 2)ch2 = (8, 7, 1, 2, 6, 6, 0, 1)ch3 = (2, 3, 9, 2, 1, 2, 8, 5)

ch4 = (4, 1, 8, 5, 2, 0, 9, 4)

ch1 = (6, 5, 4, 1, 3, 5, 3, 2)

ch2 = (8, 7, 1, 2, 6, 6, 0, 1)

ch3 = (2, 3, 9, 2, 1, 2, 8, 5)

ch4 = (4, 1, 8, 5, 2, 0, 9, 4)

Finding Fitness of Chromosomes f(ch) = (g0 + g1) - (g2 + g3) + (g4 + g5) - (g6 + g7)

ch1 = (6 + 5) - (4 + 1) + (3 + 5) - (3 + 2)ch2 = (8 + 7) - (1 + 2) + (6 + 6) - (0 + 1)ch3 = (2 + 3) - (9 + 2) + (1 + 2) - (8 + 5)

ch1 = (6 + 5) - (4 + 1) + (3 + 5) - (3 + 2) = 9ch2 = (8 + 7) - (1 + 2) + (6 + 6) - (0 + 1)ch3 = (2 + 3) - (9 + 2) + (1 + 2) - (8 + 5)

ch1 = (6 + 5) - (4 + 1) + (3 + 5) - (3 + 2) = 9ch2 = (8 + 7) - (1 + 2) + (6 + 6) - (0 + 1) = 23ch3 = (2 + 3) - (9 + 2) + (1 + 2) - (8 + 5)

ch1 = (6 + 5) - (4 + 1) + (3 + 5) - (3 + 2) = 9ch2 = (8 + 7) - (1 + 2) + (6 + 6) - (0 + 1) = 23ch3 = (2 + 3) - (9 + 2) + (1 + 2) - (8 + 5) = -16

ch1 = (6 + 5) - (4 + 1) + (3 + 5) - (3 + 2) = 9ch2 = (8 + 7) - (1 + 2) + (6 + 6) - (0 + 1) = 23ch3 = (2 + 3) - (9 + 2) + (1 + 2) - (8 + 5) = -16

- ch4 = (4 + 1) (8 + 5) + (2 + 0) (9 + 4) = -19

Finding the Fittest Chromosomes

Chromosome	Gene	Fitness
ch1	(6, 5, 4, 1, 3, 5, 3, 2)	9
ch2	(8, 7, 1, 2, 6, 6, 0, 1)	23
ch3	(2, 3, 9, 2, 1, 2, 8, 5)	-16
ch4	(4, 1, 8, 5, 2, 0, 9, 4)	-19

Finding the Fittest Chromosomes

Chromosome	Gene	Fitness
ch2	(8, 7, 1, 2, 6, 6, 0, 1)	23
ch1	(6, 5, 4, 1, 3, 5, 3, 2)	9
ch3	(2, 3, 9, 2, 1, 2, 8, 5)	-16
ch4	(4, 1, 8, 5, 2, 0, 9, 4)	-19

Part II Using Crossover on Chromosomes

Using Crossover on Chromosomes

Crossovers that will be used:

- Single point
- Two point
- Uniform

For more information about crossover:

http://mattrclark.com/2016/11/genetic-algorithms/

Source: http://www.softtechdesign.com/GA/GA_figure1.gif

Single Point Crossover

Will be applied to the best two chromosomes

Parent Chromosomes

ch2 = (8, 7, 1, 2, 6, 6, 0, 1)

ch1 = (6, 5, 4, 1, 3, 5, 3, 2)

, 1) , 2)

Single Point Crossover

Will be applied to the best two chromosomes

Parent Chromosomes

ch2 = (8, 7, 1, 2, 6, 6, 0, 1)

ch1 = (6, 5, 4, 1, 3, 5, 3, 2)

, 1) , 2)

Single Point Crossover

Will be applied to the best two chromosomes

Parent Chromosomes

ch2 = (8, 7, 1, 2, 6, 6, 0, 1)

ch1 = (6, 5, 4, 1, 3, 5, 3, 2)

Child Chromosomes

child1 = (8, 7, 1, 2, 3, 5, 3, 2)

child2 = (6, 5, 4, 1, 6, 6, 0, 1)

1)

3, 2)

Two Point Crossover

Will be applied to the 2nd & 3rd best chromosomes

Parent Chromosomes

ch1 = (6, 5, 4, 1, 3, 5, 3, 2)

ch3 = (2, 3, 9, 2, 1, 2, 8, 5)

Two Point Crossover

Will be applied to the 2nd & 3rd best chromosomes

Parent Chromosomes

ch1 = (6, 5, 4, 1, 3, 5, 3, 2)ch3 = (2, 3, 9, 2, 1, 2, 8, 5)

Two Point Crossover

Will be applied to the 2nd & 3rd best chromosomes

Parent Chromosomes

- ch1 = (6, 5, 4, 1, 3, 5, 3, 2)
- ch3 = (2, 3, 9, 2, 1, 2, 8, 5)

Child Chromosomes

child3 = (6, 5, 9, 2, 1, 2, 3, 2)

child4 = (2, 3, 4, 1, 3, 5, 8, 5)

- , 2)
- 5)
- 3, 2)
- , 8, 5)

Will be applied to the 1st & 3rd best chromosomes

Parent Chromosomes

ch2 = (8, 7, 1, 2, 6, 6, 0, 1)

ch3 = (2, 3, 9, 2, 1, 2, 8, 5)

Uniform Crossover

Will be applied to the 1st & 3rd best chromosomes

Parent Chromosomes

ch2 = (8, 7, 1, 2, 6, 6, 0, 1)ch3 = (2, 3, 9, 2, 1, 2, 8, 5)

Uniform Crossover

Will be applied to the 1st & 3rd best chromosomes

Parent Chromosomes

ch2 = (8, 7, 1, 2, 6, 6, 0, 1)ch3 = (2, 3, 9, 2, 1, 2, 8, 5)

Child Chromosomes

child5 = (8, 3, 1, 2, 1, 2, 0, 5)

child6 = (2, 7, 9, 2, 6, 6, 8, 1)

Uniform Crossover

Part III Finding Fitness of Child Chromosomes

Finding the Fittest Chromosomes

Chromosome	Gene	Fitness
child1	(8, 7, 1, 2, 3, 5, 3, 2)	
child2	(6, 5, 4, 1, 6, 6, 0, 1)	
child3	(6, 5, 9, 2, 1, 2, 3, 2)	
child4	(2, 3, 4, 1, 3, 5, 8, 5)	
child5	(8, 3, 1, 2, 1, 2, 0, 5)	
child6	(2, 7, 9, 2, 6, 6, 8, 1)	

Chromosome	Gene	Fitness
child1	(8, 7, 1, 2, 3, 5, 3, 2)	
child2	(6, 5, 4, 1, 6, 6, 0, 1)	
child3	(6, 5, 9, 2, 1, 2, 3, 2)	
child4	(2, 3, 4, 1, 3, 5, 8, 5)	
child5	(8, 3, 1, 2, 1, 2, 0, 5)	
child6	(2, 7, 9, 2, 6, 6, 8, 1)	

Chromosome	Gene	Fitness
child1	(8, 7, 1, 2, 3, 5, 3, 2)	15
child2	(6, 5, 4, 1, 6, 6, 0, 1)	17
child3	(6, 5, 9, 2, 1, 2, 3, 2)	-2
child4	(2, 3, 4, 1, 3, 5, 8, 5)	-5
child5	(8, 3, 1, 2, 1, 2, 0, 5)	6
child6	(2, 7, 9, 2, 6, 6, 8, 1)	

Any Improvements?

Chromosome	Gene	Fitness
child1	(8, 7, 1, 2, 3, 5, 3, 2)	15
child2	(6, 5, 4, 1, 6, 6, 0, 1)	17
child3	(6, 5, 9, 2, 1, 2, 3, 2)	-2
child4	(2, 3, 4, 1, 3, 5, 8, 5)	-5
child5	(8, 3, 1, 2, 1, 2, 0, 5)	6
child6	(2, 7, 9, 2, 6, 6, 8, 1)	
ch2	(8, 7, 1, 2, 6, 6, 0, 1)	23
ch1	(6, 5, 4, 1, 3, 5, 3, 2)	9
ch3	(2, 3, 9, 2, 1, 2, 8, 5)	-16
ch4	(4, 1, 8, 5, 2, 0, 9, 4)	-19

Any Improvements?

Chromosome	Gene	Fitness
ch2	(8, 7, 1, 2, 6, 6, 0, 1)	23
child2	(6, 5, 4, 1, 6, 6, 0, 1)	17
child1	(8, 7, 1, 2, 3, 5, 3, 2)	15
ch1	(6, 5, 4, 1, 3, 5, 3, 2)	9
child5	(8, 3, 1, 2, 1, 2, 0, 5)	6
child6	(2, 7, 9, 2, 6, 6, 8, 1)	
child3	(6, 5, 9, 2, 1, 2, 3, 2)	-2
child4	(2, 3, 4, 1, 3, 5, 8, 5)	-5
ch3	(2, 3, 9, 2, 1, 2, 8, 5)	-16
ch4	(4, 1, 8, 5, 2, 0, 9, 4)	-19

Part IV The Optimum Solution

The Optimum Solution

ch[optimum] = 99009900

ch[o] = 99009900f(ch[0]) = (9 + 9) - (0 + 0) + (9 + 9) - (0 + 0)

ch[o] = 99009900f(ch[0]) = (18) - (0) + (18) - (0)

ch[o] = 99009900f(ch[0]) = 18 + 18

ch[o] = 99009900f(ch[0]) = 36

Part V mutation necessa

Is mutation necessary?

Crossover

Mutation

Crossover

Exploitation

Mutation

Exploration

Crossover

- Exploitation
- minimum

Mutation

- Exploration
- guessing and could run indefinitely

Only crossover will mean more likely to be stuck in a local

• Only mutation will mean that the program is randomly

Both crossover and mutation are necessary as crossover converges on an optimum solution whilst mutation tries to explore the search space.

Part VI My Implementation

My Implementation

My implementation: http://doc.gold.ac.uk/~mclar053/downloads/session_9_GA.zip Blog notes: http://mattrclark.com/2016/12/an-implementation-of-genetic-algorithms/