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Abstract. This invited special session of IGS 2023 presents the works carried out
at Laboratoire Scribens and some of its collaborating laboratories. It summarises
the 17 talks presented in the colloquium #611 entitled « La lognormalité: une
fenêtre ouverte sur le contrôle neuromoteur» (Lognormality: a window opened on
neuromotor control), at the 2023 conference of the Association Francophone pour
le Savoir (ACFAS) onMay 10, 2023. These talks covered a wide range of subjects
related to theKinematicTheory, includingkey elements of the theory, somegesture
analysis algorithms that have emerged from it, and its application to various fields,
particularly in biomedical engineering and human-machine interaction.

Keywords: Kinematic Theory · Lognormality Principle · Typical Applications

1 Introduction

The Kinematic Theory of rapid humanmovements describes, using a fundamental equa-
tion called the “lognormal function”, the speed of an end effector. Various software
packages have been developed to reverse-engineer movements by reconstructing them
with lognormals. This reconstruction provides central parameters that represent the state
of the brain, and peripheral parameters that describe the properties of the neuromuscu-
lar systems that produced the movement. Over the years, the theory has been tested
and validated in numerous experiments, and successfully used to describe the essential
properties of the velocity profiles of the fingers, wrist, trunk, head and eyes, etc. This
led to postulate the Lognormality Principle, which states that the lognormal impulse
response of a neuromuscular system emerges from a convergent process driven by the
central limit theorem. This optimal global pattern reflects the behaviour of individuals
who have perfect control over their movements. The production of complex movements
is achieved by the temporal superposition and summation of lognormal velocity vectors,
with the aim of minimising their number in a given task, to produce efficient and fluid
gestures, optimising the energy required to generate them. As a corollary, motor con-
trol learning in children can be interpreted as a migration towards lognormality. Then,
for most of their lives, normal adults take advantage of their lognormality to control
their movements. Finally, as ageing and potential health problems increase, there is a
progressive deviation from lognormality.

This manuscript presents the works carried out at the Scribens laboratory and some
of its collaborating laboratories. It summarises the 17 selected talks presented in French
in the colloquium #611 entitled « La lognormalité: une fenêtre ouverte sur le contrôle
neuromoteur» (Lognormality: a window opened on neuromotor control), at the 2023
conference of the Association Francophone pour le Savoir (ACFAS) on May 10, 2023
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https://www.acfas.ca/evenements/congres/programme/90/600/611/c. The ACFAS is a
Canadian non-profit organization, based inQuébec. Its community (4500 activemembers
from 32 countries) promotes scientific activity, stimulates research and disseminates
knowledge in French. Our workshop program focused on the key elements of the theory,
some gesture analysis algorithms that have emerged from it, and provided an overview
of various applications, particularly in the fields of biomedical engineering and human-
machine interaction. Throughout this paper, we look back on these studies, as well as
forward, and therefore cover past, current and future works. In addition to specialists in
signal processing, neuropsychology, neuroscience, education, kinesiology, occupational
therapy, pediatrics, students who have completed internships or studies at the Scribens
laboratory and student entrepreneurs who plan to use lognormality as a metric in their
products, have participated to this colloquium.

More specifically, this paper is an overview of the special session held and presented
at the IGS 2023 conference by the first author.

2 The Lognormality Principle: Theory and Overview of Some
Applications

2.1 Context

The asymmetric bell-shaped velocity profiles of rapid aimedmovements and their invari-
ant properties have been a subject of investigations for many decades in the last century.
Among the various models that have been developed to explain these phe-nomena, the
Kinematic Theory [118–120, 124] proposed an emergent ecological approach based on
the central limit theorem to predict that these asymmetric bell-shaped velocity profiles
can be optimally described with lognormal functions. Indeed, assuming that the invari-
ant properties of these simple movements reflect the asymptotic behaviour of complex
systems, composed of a large number of time coupled neuromuscular networks, such
a neuromuscular system will have a lognormal impulse response that reflects its ideal
behaviour, as long as such a neuromuscular system is made up of a large number of
coupled subsystems and that the coupling is driven by a proportionality relationship
between the subsystem cumulative time delays. This emergence towards lognormality is
achieved from asymptotic convergence established over the years, from the exploratory
oscillations of the baby’s arm to the learning of precise gestures, as in handwriting
exercises and sports.

2.2 The Lognormality in practice

Over the last 25 years, the Kinematic Theory has been very useful in terms of signal
processing, as a reverse engineering methodology to reconstruct any movements and
extract central and peripheral lognormal parameters:

t0: Represents the time atwhich themotor command is emitted by the central nervous
system. In psychomotor tests, this corresponds to the moment when the nervous system
initiates a response after receiving a start signal, such as a sound or visual stimulus. The
parameter t0 makes the Kinematic Theory a causal theory, distinguishing it from all the
other models in use nowadays [107].

https://www.acfas.ca/evenements/congres/programme/90/600/611/c
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D: Denotes the amplitude of a lognormal stroke. It corresponds to the total distance
covered by the trajectory associated with the specific movement primitive.
µ: Reflects the logarithmic time delay. Exp(µ) defines the time required to reach the
median of the motion distance. This parameter provides insight into the overall speed of
the reaction.
σ: Represents the logarithmic response time, characterizing the duration of the motion.
θstart and θend: Indicate the start and end angles of the motion, respectively, measured
in radians.
SNR: The signal-to-noise ratio compares the quality of the reconstructed velocity profile
to the recorded velocity. A higher SNR value signifies a more accurate reconstruction.
nbLog: This parameter represents the number of lognormal functions used to reconstruct
a velocity profile. It serves as an indexofmotion smoothness,with lower values indicating
smoother motion.
SNR/nbLog: This ratio reflects the fluidity of themovement and is calculated by dividing
the SNR value by the nbLog.

Figure 1 (adapted from Faci et al. 2021) highlights the effect of these neuromotor
parameters on a lognormal impulse response:

Fig. 1. Effect of the main parameter on a lognormal impulse response

Two major families of algorithms have been developed over the years, the Delta-
Lognormal extractors used to reconstruct simple straight pointing movement with two
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lognormals, one agonist and the other one antagonist [67, 126, 41, 108, 19] and theSigma-
Lognormal extractors used to reconstruct any 2D [54, 105], and 3D [56, 59] complex
movements. As it has been shown time and again, reconstructing various gestures with
lognormal patterns provides a powerful representation of the underlying neuromotor
processes involved in different gestures. So far, the Kinematic Theory has been exten-
sively tested by more than 20 research teams from 8 countries with around 300 000
samples, 11 000 participants, 18 tablet models, 10 other motion capture devices with
sampling frequency ranging from 15 to 240 Hz.

In summary, the Kinematic Theory offers researchers a strong realistic theoretical
paradigm, a general equation and a set of physiologically meaningful parameters and a
set of robust parameter extraction algorithms. [115, 116, 121, 158].

2.3 Workshop Program

The following sections present typical applications of this methodological approach.
This can be seen as the tip of an iceberg. There are more projects going on all over the
world. Those that were selected for the colloquium were those that could be presented
by a French speaker.

The whole workshop has been divided into four themes.
Section 3 presents three papers on AGING: a proof of concept regarding the use

of lognormality to monitor brain stroke rehabilitation, the development of a kinematic
signature for people with Parkinson’s and psoriatic arthritis and a search for Parkinson’s
disease kinematic biomarkers.

Section 4 deals with PERFORMANCE. The first paper deals with the modelling
of electrocardiogram using lognormals, a novel set signals where lognormality can be
exploited. The second report two recent studies, one characterizing muscular fatigue
and the second interpreting lognormality in terms of optimal control. The third aims at
providing tolls for an objective analysis of surgical performance, a brand-new field of
potential applications. The fourth summarizes previous studies dealing with the kine-
matic reconstruction of static calligraphic traces to infer a physiologically plausible
motion from an input trace image.

Section 5 deals with TECHNIQUES. The first paper presents a globally optimal
delta lognormal parameter extractor based on a branch and bound search method com-
bined with the interval arithmetic. The second describes the first 3D Sigma-Lognormal
extractor that has been recently developed and tested. The third compares symbolic and
connectionist algorithms to correlate the age of healthy children with Sigma-Lognormal
neuromotor parameters.

Section 6 deals with CHILDHOOD. The first two deals with handwriting learning,
one with the assessment of graphomotor skills in kindergarten and first grade students
in France and Québec and the second with the characterization and analysis of grapho-
motor behaviours involving young learners in a school context, both studies based on
the Kinematic Theory and its lognormal models. The next three papers deal with neu-
rodevelopmental problems and investigate the usefulness of the pencil strokes test: a
pilot study dealing with strokes produced by children with mild traumatic brain injury,
another one with strokes produced by children with ADHD. The third one, a work in
progress, dealing with the characterization of children born prematurely to evaluate the
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risk of developmental difficulties at preschool age. Finally, the last paper is a brand-new
research proposal that aims at exploring the benefits of combining virtual reality and
lognormality for prescreening ADHD in children.

3 AGING

3.1 Remote Monitoring of Stroke Patients via 3D Kinematics and Artificial
Intelligence

Context. Being one of the top leading reasons for motor and cognitive impairment
[30], stroke patient early detection and post-stroke monitoring has become major human
concerns and research focus. Namely, post-stroke patient monitoring during the first
weeks can optimise the rehabilitation process and lessen the human and financial burden
on both the patients and caregivers.We propose a whole movement spotting and analysis
pipeline, that have been validated in a clinical institution.

Experimentation Protocol. Our experimentation protocol has been influenced by
the Fugl-Meyer clinical assessment, in an effort to make it as realistic as possi-
ble. It consists of four key target movements:M1: shoulder extension/flexion, M2:
shoulder abduction/abduction, M3: external/internal shoulder rotation, M4: elbow
flexion/extension.

We have designed two experimental scenarios:

• Scenario L1: the individual alternates between the four key movements, many times.
• Scenario L2: the individual performs a sequence of key target movements and non-

target movement drawn from daily activities [12].

To record data individuals have had to wear anAppleWatch Series 4, in eachwrist. A
smartwatch applicationhas beendeveloped to extract thewatch’s signals and synchronize
both watches.

MovementSpotting. Before analysing themovements,weneeded to spot and recognise
them. Therefore, we have implemented an architecture inspired from the work of [82].
The architecture startswith a convolution size set to be half the sampling rate, followed by
twootherwise separable convolutions.Aswell as, usingSVMas a baseline classification.

Since it is difficult to perform the action spotting in scenario L2, given that there are
many movement classes, we have opted for clustering the movements that are similar.
Concretely, we have clustered all movements into two classes (C0, C4): C4: being all
movements similar to M4; C0: the rest of movements.

KinematicAnalysis. In order to analysemovements and estimate the patients’ progress,
we have used a 3D algorithm [59] based on the Kinematic Theory of rapid human
Movements [118–120, 124].

Results. Spotting. SVMs (accuracy = 84%) have outperformed CNNs(accuracy =
65%) for both healthy subjects, for scenario L1. The same pattern has been observed
within patients. This is due to the lack of sufficient data for training, in the case of CNNs.
For scenario L2, accuracy decreases to 61% for SVMs and 59% for CNNs for healthy
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samples and lower than that for the patients. For the patients, the task was even harder
because of their motricity lack.

Kinematic Analysis. The SNR/nbLog (Signal-to-noise-ratio per lognormal) for
patients is significantly lower than for healthy individuals.

Additionally, the contrast between patients and healthy individuals, in terms of
SNR/nbLog is remarkably higher for movement M4. One possible explanation for that,
could be the difficulty of executing M4. Furthermore, no big difference was observed
between the affected and non-affected arms for the patients, the reason behind that could
be the fact patientsweremoving both arms at the same time, thus the affected arm impacts
the non-affected arm performance.

Outcomes. For the first time, the 3D Kinematic Theory has been applied to analyse
movements for stroke patients on smartwatches. The experiments have proved that it is
an efficient non-invasive biomarker to assess stroke patients’ progress. Further work can
be done on the design of experimental scenarios by focusing on analytic movements.

3.2 Kinematic Signature in People with Parkinson’s and Psoriatic Arthritis:
Potential of the Sigma-Lognormal Approach

Context. Functional mobility, defined as one’s ability to accomplish basic activities of
daily living, is traditionally assessed using questionnaires or clinical performance tests
[164]. These approaches are mainly based on subjective assessment, somehow limiting
their ability to assess changes. In research labs, mobility can be assessed objectively
using diverse high-end equipment [98, 164]. Yet, advances in technology, including
but not limited to inertial measurement units (IMU), increase the potential for objective
functional mobility appraisal outside traditional laboratories, including the clinic and the
home [95].However, these so-calledwearable systemswork ondifferent basic principles,
which may require to rethink some of the traditional variables used to describe mobility.
For example, gait is often characterized using stride length, calculated by the displace-
ment of the foot. With IMU, such metric requires a double integration of the aligned
acceleration signal, resulting in significant integration errors. To overcome these limi-
tations, modelling approaches can be used to characterize movement signatures [127].
Among these, the Sigma-Lognormal model, based on the Kinematics Theory, aims at
characterizing the velocity profile during a pointing task. It has been extensively used
to assess scripted 2D signature. Yet, mobility tasks also follow some sort of signature,
though in a less controlled context. For example, turning while walking involves a spe-
cific cranio-caudal sequence where the head initiates the movement, rotating towards the
new desired direction, followed by the trunk and the pelvis, until body is fully realigned
[73]. In Parkinson’s disease, this signature is modified due to an increased axial coupling
[146]. In other words, turning while walking can be seen as a pointing task in the ori-
entation domain, which signature varies according to the ability of a person to perform
the turn safely. Similarly, gait can be seen as the foot following a specific movement
signature to enable a shift in the center of mass, leading to body’s displacement. This
section presents the potential of the Sigma-Lognormal model to assess turn and gait.
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Fig. 2. Sigma-lognormal model to characterize the turn signature. (A) Experimental protocol.
Participants were equipped with 17 inertial sensors. Head and trunk sensors were used to assess
the turn. A total of 22 participants performed a timed-up and go where participant stands up,
walks for 3m, turns around, and comes back to its initial seated position. The turn phase was
manually segmented for analysis. (B) Representative turn signature for a healthy individual and a
PD patient, on/off medication. (C) Sigma-lognormal parameters analysis. Phase 1 corresponds to
the turn initiation by the head, while phase 2 relates to the command given to the trunk to realign
with the head.

Turn signature with the Sigma-LognormalModel. Fifteen healthy older adults (OA)
and 14 Parkinson’s disease participants (PD) performed a timed-up and go while
equipped with IMUs (Fig. 2A). Relative orientation of the head to the trunk was calcu-
lated and derived to obtain relative orientation velocity [85, 86]. This signal was then
modelled using the sigma-lognormal approach, and the resultant parameters, analyzed
[83, 84].

Figure 2B illustrates the ability of the model to reproduce the signature for all partic-
ipants and conditions. The overall mean signal over noise ratio (SNR) of 28.6 confirms
the fit of the model with the turn signature. The various sigma-lognormal parameters (D,
t and s) were then analyzed to assess (i) the ability of the model to discriminate between
older adults and early Parkinson’s disease, and (ii) its sensitivity to change through anal-
ysis of the PD on/off medication trials. Results have shown that the SNR/nbLogs ratio,
defined as the quality of the model over the number of logs re-quired to fit the signal,
have significantly changed betweenOA and PD (OA: 9.6 [8.1, 10.6]; PD: 6.3 [5.2, 7.8], p
= 0.003). These results support the idea that motor control deteriorates with Parkinson’s
disease. Detailed analysis of the Sigma-Lognormal parameters also revealed a signifi-
cant change between OA and PD in the D1 parameter, associated with the amplitude of
the command given by the neuromuscular system to initiate the turning task (OA: 21.7
[15.1, 29.0]; PD: 11.0 [8.4, 20.4], p= 0.039). Impact of medication was also captured in
the D parameters, with D1 showing a tendency to increase and D2 revealing a significant
increase in command’s amplitude engaging the trunk into the motion (Fig. 2C). These
results confirm the usability of the Sigma-Lognormalmodel to assess turn signature. This
study reveals the model’s potential to be used in the orientation domain, on complexed
tasks involving multiple segments.
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Gait Signature Using the Sigma-Lognormal Model. Gait has been studied exten-
sively, though most studies concentrate on controlled laboratory conditions [77]. Nowa-
days, there is an increased interest in evaluating gait in natural environments. To do so,
IMUs are often used due to their portability and low cost [164]. Though these systems can
detect temporal parameters accurately (e.g. cadence), they still struggle to estimate spa-
tial information like stride length [155]. This study investigates the potential of using the
Sigma-Lognormal model to (i) characterize gait, and (ii) estimate stride length. Twenty-
four healthy individuals (mean age: 31 ± 10 years old) and 20 persons with psoriatic
arthritis (mean age: 54 ± 9 years old) performed 2-min walking trials on a treadmill
at slow, normal, and fast speeds. Participants were instrumented with 39 markers to
enable full-body motion capture (OptiTrack by Natural Point, Corvallis, OR, USA).
Each trial was segmented into strides, to be further analyzed. Velocity of the foot in
the direction of motion was processed using the Sigma-Lognormal approach. Figure 2A
illustrates the ability of the model to reconstruct a stride. The overall mean SNR of 78.5
confirms the representativity of the model. Linear regression was then performed on
Sigma-Lognormal parameters (D, µ, σ) from the first two strokes to determine the abil-
ity of the model to estimate stride length. The obtained linear regression model resulted
in an excellent fit (R2 = 0.9769). Mean error of 0.0007cm also confirms the potential
of the approach to estimate stride length. Using a Bland & Altman approach, the 95%
limits of agreement were determined to be± 9 cm. In other words, the regression model
estimates stride length with an accuracy of± 9cm in 95% of the cases. To improve these
results, analysis was performed using the median stride for each individual, per speed.
This approach reduced the limits of agreement to [-5.5, 4.2] cm. This study thus demon-
strated the ability of the Sigma-Lognormal model to characterize gait and revealed its
potential to estimate stride length.

Fig. 3. Sigma-Lognormal model to characterize the gait. (A) Representative gait signature for
healthy and pathological individuals at slow, normal and fast speeds. (B) Models precision results

3.3 Contribution of Lognormality in the Identification of Kinematic Biomarkers
in the Identification and Early Differential Diagnosis of Parkinson’s Disease

Context. Parkinson’s disease (PD) affects an estimated 6 000 000 people worldwide
[140], making it the second most common neurodegenerative disease, only behind
Alzheimer’s disease.
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The objective of designing an effective diagnostic method has not been reached yet,
hindering research and development efforts for better treatments and proper manage-
ment. Indeed, various disorders including atypical parkinsonian syndromes, hereditary
parkinsonism, as well as secondary parkinsonism due to external causes such as drugs
or infections, can often be mistaken for PD, especially during the first years of symp-
tomatic disease progression. One clinicopathologic study found only 26% accuracy for
a clinical diagnosis of PD proposed at the first consultation visit to a neurologist, in cases
that received diagnostic confirmation by autopsy [1].

The search for biomarkers has been a main focus of PD research for several decades.
An appropriate, easily measurable biomarker would allow early detection of the dis-
ease, at a time when clinical diagnosis can be uncertain, monitor progression as well as
treatment response. Various genetic, biochemical, and multimodal imaging biomarkers
have been explored with promising results [36], but cost, access, and data reproducibil-
ity often limit widespread applicability. In addition, deep phenotyping of motor and
non-motor features of PD has been developed, using clinical scales, kinematic plat-
forms, and body-worn sensors for data acquisition, combined with different data mining
methods. Physiological eye, limb, or axial (posture and gait) movements or tasks have
been recorded, in attempts to capture a neuromuscular signature that would reflect the
pathological alterations that distinctly affect motor control in PD and related disorders.

These quantitative approaches offer the salient advantage of assessing the entire
neuronal network recruited to prepare and execute a motor command, and multiple rele-
vant motor features simultaneously. Several handwriting and geometric tasks have been
evaluated, discriminating PD patients from healthy participants [34, 98, 147]. However,
the applicability of these signals in early disease as tools to differentiate PD from other
parkinsonian syndromes remains to be determined.

Study Parameters. One of the main purposes of this study is to assess whether the
Lognormality Principle and the Sigma-Lognormal model can be used as a diagnosis
tool for detection and differentiation of PD and atypical Parkinsonian syndromes.

The Script-Studio software [105] can be used to extract six neuromotor parameters
from a pen stroke, and two global parameters.

At this point in time, and regarding the amount of data gathered, it has been found
more pertinent to focus mainly on the global parameters: the Signal to Noise Ratio
(SNR) and the number of lognormal impulses (nbLog) required to reconstruct the pen
stroke. One last main study parameter is the SNR divided by the number of lognormal
im-pulses required: The SNR/nbLog, which gives a general overview of the quality of
reconstruction and fine motor control of the patient. A high SNR/nbLog ratio tends to
indicate a good reconstruction and a patient in good control of its fine motricity.

Method. Participants. Building on prior experience [26], we collected data on four
blocks of tasks involving distinct neuromuscular programs implicated in ocular pur-
suit and saccades, hand graphics, arm movements, and vocal sounds, according to the
kinematic theory of rapid human movements performed in 2D and 3D. The objective
of this study is to collect data for at least 30 patients in each of the three groups (PD,
related parkinsonian syndromes and healthy patients.) Patients between age 50–75 with
a clinical diagnosis of PD (N = 10) or related Parkinsonian syndromes (N = 1) were
recruited within the first 6 years of motor symptoms, and compared to age-matched
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healthy participants (N= 3). All provided informed consent. Patients were tested in the
practically-defined OFF state, at least 12 h following the last intake of antiparkinsonian
medication.

Tasks. Parkinsonian signs were assessed using a validated scale by a qualified neu-
rologist. Eye movements were recorded with a standard eye tracker system. Following
a visual or auditory cue, participants were instructed to make 30 linear strokes on a
WACOM tablet using an electronic pen, repeatedly connect two or three (triangular)
dots as quickly as possible, and to draw cursive connected “!!!!!!” and a spiral. They
were asked to hold the tablet horizontally with arms stretched for 10 s, and to make tri-
angle-shaped movements of the arms in the horizontal and vertical plane for 10 s while
still holding the tablet with built-in accelerometer and gyroscope. They were asked to
sustain a vowel or repeat 3 alternating vowels for 4 s, and this sequence was repeated
5 times. Velocity profiles were generated, and position signal data fed into the Sigma-
Lognormal estimator. The lognormal parameters were calculated using low-pass filtered
signals.

Results. Preliminary analysis for this pilot study reveals flagrant differences in SNR,
number of lognormal impulses (and thus SNR/nbLog ratio) between healthy and PD
patients on the “!!!!!!” tests. The comparisonwith the atypical group (typical vs atypical
PD) also seems promising, though not reliable at this stage with the limited number of
participants.

We cannot draw conclusions for this study until we reach a higher number of par-
ticipants in all three study groups. Furthermore, a more complete analysis including all
study parameters (fine and global) could prove to be an insightful discriminating tool.
Lastly, a variety of tests aiming at different motor control skills could better differentiate
symptoms between PD, related Parkinsonian syndromes, and healthy patients.

4 Performances

4.1 Deep Reinforcement Learning for ECG Modelling Using Lognormals

Context. In a recent study [109], we discussed the development of a model-driven
approach for the analysis of the electrocardiogram (ECG) signals. This approach is
motivated by the need to improve our capacity to understand the dynamics of complex
systems represented in high dimensional space using comparatively sparse experimental
data. This combination results in ill-posed problems that we can attempt to regularize
by informing (constraining) our analysis using prior knowledge. We can operationalize
this idea by embedding pre-existing knowledge in models used for inference. Further,
by using biophysically-relevant models with parameters representing latent variables of
interest, the inverse modelling process allows investigating processes that may not be
experimentally accessible.

Previous models proposed for the ECG have mostly been limited to forward mod-
elling and relied on systems of differential equations [24, 133].Althoughvery interesting,
these oscillatory models operate near chaotic regimes, which makes them notoriously
difficult to fit during inverse modelling. Alternatively, the PQRST complex of the ECG
has been modelled by fitting a pair of Gaussian equations for each component of this
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complex [9]. This approach is valuable for applications relying on high-quality fitting
(e.g., signal compression), but the absence of biophysical motivation for this model is
limiting.

Method. Here, we propose to model the PQRST complex as a set of lognormal equa-
tions. The motivation for adopting the lognormal is well-established in the context of
the Kinematic Theory [118–120, 124]. The P, Q, R, S and T components of the ECG are
associated with subsequent waves of depolarization and repolarization generated by the
propagation of action potentials through gap junctions across the network of myocardial
cells constituting the different structure of the heart (i.e., the sinoatrial node, the walls
of the atria, the atrioventricular node, the His-Purkinje system, and the walls of the ven-
tricles). We modelled each wave of the PQRST complex with one lognormal, except for
the T wave that we decomposed in two lognormals (T + and T-) because its shape was
not sufficiently well captured by a single lognormal.

For inverse modelling, we used a prototype-based approach (O’Reilly & Plamon-
don, 2010), where a prototype was used (Fig. 4) as an initialization condition for a deep
reinforcement learning approach using as a reward the difference in signal-to-noise
ratio (SNR) between two consecutive steps of the iterative learning algorithm [109]. We
constrained this optimization process in a box. The envelope of all solutions compatible
with these constraints can be calculated [108], allowing us to validate that this envelope
encompasses the PQRST complexes observed in our dataset. We also enforced model-
plausibility constraints to ensure that the model obtained from the fitting operation is
plausible according to our knowledge of the targeted system. In our case, the order
of the waves in the PQRST complex must be conserved. Thus, we enforced that the
peaks of the lognormal equations modelling each of these components are not allowed
to move temporally in a way that would inverse their order. Such an alteration of the
temporal ordering of components is common in lognormal modelling, with significantly
higher SNR being sometimes achievable by moving components in positions that are
not plausible in a physiological sense but that model sources of noise accurately.

We validated our approach with a dataset of 150 ECG recordings collected from 40
infants between 1 week and 24 months of age. We divided these recordings into 9212
60-s segments of uninterrupted ECG recordings. Heartbeats were automatically detected
using the Python library HeartPy. We rejected 803 segments (8.72%) because heartbeats
could not be detected (i.e., a BadSignalWarning error was raised by HeartPy or less than
20 beats were detected). We made beats comparable by epoching and normalizing the
beat duration as follows. Considering three subsequent R peaks occurring at time t1, t2,
and t3, the epoched and normalized version of the peak corresponding to t2 is obtained
by linearly interpolating the ECG between t2-α and t2 + α over 500 regularly spaced
samples, with α = (t3-t1)/2. This approach interpolates the EEG signal roughly (exactly
when t3-t2 = t2-t1) from t1 to t3 on 500 points, with t2 in the middle of that window.
Note that this approach is slightly different than what we used in [105]. This deviation
is adopted to correct the fact that the method in [105] concatenating two windows
interpolated on [t1, t2] and [t2, t3] could introduce a slight distortion in the shape of
the R peak when the cardiac rhythm is accelerating or decelerating. We mapped these
500-point epochs to a [−1, 1] interval and refer to the variable along that dimension as
the normalized time. For each segment, we computed a mean beat by averaging across
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these epochs. We characterized the stability of the PQRST profile within a segment by
computing the following signal-to-noise ratio between every beat and the mean beat. We
rejected every segment that has a mean SNR across all its PQRST lower than 5 dB (N
= 578; 6.3%). Such low SNR indicates PQRST complexes that are not similar across
the recordings due to issues like R peak detection and various sources of artifacts.

We used the Stable_baseline3 and OpenAI Gym Python packages to train the rein-
forcement learning model and to apply it for parameter inference. The details of this
procedure can be found in [109]. Parameters learned on time-normalized ECG signals
can be mapped to corresponding values on the original time scale using the following
relationship: {µ*, σ*, t0*,D*}= {µ+ log(α), σ,αt0,αD}. The code used for the analyses
is available at https://github.com/lina-usc/ecg_paper (accessed on 19 June 2023).

Results. We extracted the PQRST complexes for all segments (N= 1,008,784 PQRST
complexes). We excluded from further analyses beats fitted with an SNR < 5 dB (8.
8%). The fitting SNRs are generally lower than for fitting movement kinematics, with
an average of 10.11 dB. For example, an average SNR of 20.75 dB was reported for
a prototype-based lognormal modelling of the speed of triangular motion [106]. We
believe this lower fitting accuracy for ECG signals is partly due to systematic offsets in
the resting potentials. Such systematic offsets significantly contribute to the modelling
error and can be observed at a steady state for electric potential but not for the speed of
human movements.

As a proof of concept, we validated thatmodelling parameters are sensitive to a factor
expected to have a significant effect on ECG: age. We evaluated the significance of the
relationship between age and modelling parameters using the Kendall rank correlation
coefficient.We used this non-parametric test to account for the non-normality of the data.
Out of 24 parameters, 14 showed a statistically significant relationship with age at padj
< 0.05 with a conservative Bonferroni adjustment for 24 independent tests (Table 1).

Table 1. Kendall correlation coefficients and associated p-values for the relationships between
model parameters and age. Bold red values indicate statistical significance as padj < 0.05.

D � ı t0

Ĳ padj Ĳ padj Ĳ padj Ĳ padj
P 0.135 0.764 .245 2.28e-03 -0.0842 4.31 -0.374 6.04e-08

Q -0.00487 10.5 0.178 0.110 5.10e-04 23.8 -0.322 7.07e-06

R 0.0669 6.88 0.377 4.59e-08 -0.113 1.71 -0.452 1.36e-11

S -0.158 0.288 0.188 0.0673 0.0332 14.3 0.397 5.87e-09

T+ 0.292 7.61e-05 0.382 2.92e-08 0.249 1.80e-03 0.377 4.37e-08

T- -0.302 3.48e-05 0.422 4.22e-10 0.248 1.86e-03 0.232 5.26e-03

https://github.com/lina-usc/ecg_paper
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Fig. 4. Left: Prototype for the PQRST complex. The shaded region shows the envelope defined
by the bounding box constraints on the value of the parameters. Right: Schematic of the deep
reinforcement learning model implemented for parameter estimations. Reproduced from [109].

Discussion. We expect the fitting accuracy from an approach such as [9] to be higher
than what was obtained with our model, although we did not explicitly compare accura-
cies. Published values may not be comparable because they were obtained on a different
dataset, with different preprocessing, targeting different populations. Furthermore, our
approach uses only 24 parameters, whereas the approach using pairs of normal equations
in [9] uses 35. This approximative 50% increase in modelling parameters is expected
to provide more flexibility to improve fitting accuracy. More importantly, we aimed
to develop a biologically relevant model rather than obtain maximal fitting accuracy.
High fitting accuracy is desirable for some applications, such as the signal compression
application mentioned in [9]. However, for physiological interpretability, the biological
relevance of the model and the preservation of component order are more important
and should be prioritized even when it results in some loss in fitting accuracy. These
arguments should be familiar to anyone who pondered on the issue of model overfitting.

Outcomes. As demonstrated by these initial results, the proposed model is sensitive
to factors influencing the ECG signal. Given the interpretability of this model in terms of
the convolution of a large number of coupled subsystems, this model-driven approach to
the analysis of ECG is poised to offer a more principled way to analyze these biosignals.

4.2 Kinematic Theory, Muscle Fatigue and Optimality: Contribution
to the Biomechanics of the Upper limb

Context. The laboratory of Simulation and Movement Modelling (Montréal, Canada)
is recognized for its research on upper-limb biomechanics. Particularly, it focused on 1)
shoulder fatigue [65, 66], a component of the injury production mechanism [32], and,
more recently, 2) predictive simulation using the optimal control theory [100]. Both
applications were recently studied in line with the Kinematic Theory (KT) of rapid
human movements. Existing tools like visual analog scales, questionnaires, and elec-
tromyography (EMG) have provided valuable insights into shoulder fatigue prevention
but remain limited or complicated to use in clinics, sports, or occupational environments.
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Differentiating between central and peripheral shoulder fatigue is also critical for tai-
loring appropriate recovery interventions. KT, which models the neuromotor impulse
response through lognormal functions, offers a robust framework for detecting patholo-
gies. This theory provides an idealized model of motor control, where changes in the
neuromuscular system are manifested through modifications in parameters defined by
this theory. A relevant tool that relies on KT must be sensitive to shoulder fatigue, and
its parameters should be reliable. The objectives of two recent papers [80, 81] were to
assess if shoulder fatigue might change KT central and peripheral parameters and their
test-retest reliability.

Invariants commonly observed in human movements provide valuable insights into
movement generation and control mechanisms. According to KT, the velocity profile’s
invariance derives from the human system’s complexity and the interconnection of its
numerous subsystems. It results in an asymmetrical bell-shaped velocity profile of the
end-effector, as observed in rapid human movements. Concurrently, optimal control
theory suggests that a system operates in the most efficient manner possible, considering
both cost function and constraints. Interestingly, no identified cost function has been able
to reproduce the speed profile suggested byKT. The objectives were twofold: 1) to assess
various cost functions by expressing them in terms of parameters derived from KT, and
2) to propose a novel cost function that aligns coherently with KT velocity profiles.

Shoulder Fatigue Assessment. Twenty healthy participants performed two sessions of
handwriting tasks on a tablet put vertically at shoulder height, both pre- and post-fatigue
of the shoulder (50% of maximum voluntary contraction in concentric at 90°/s till 9/10
on Borg CR10 scale). In one session, the fatigue was induced through internal rotation,
and in the other, through external rotation. The writing tasks involved basic strokes,
triangles, and horizontal and vertical oscillations. Parameters from these strokes were
determined following the Sigma-Lognormal model. Both intra-subject and inter-subject
changes in parameters due to fatigue were evaluated using U-Mann-Whitney tests. An
additional 20 participants perform two sessions of pre-fatigue strokes only. Intraclass
correlation coefficients (ICC) were calculated from the 40 participants to quantify the
parameter reliability. We also reported the standard errors of measurement and minimal
detectable changes.

Central and peripheral parameters were significantly modified after fatigue, but
responses were subject-specific. Still, when considering our sample, parameters that
describe the motor program execution increased significantly after fatigue. Reliabilities
of the KT main parameters were moderate to excellent for all tests. Particularly, the
parameters that best explained shoulder fatigue exhibited good to excellent reliability,
accompanied by low standard errors of measurement. Overall, the setup and handwrit-
ing tests were appropriate for shoulder fatigue detection. Further research is required to
detect lower levels of shoulder fatigue and determine its feasibility in clinical, sports,
and occupational environments.

Optimal Control and Kinematic Theory. Common cost functions (least squared
velocity, acceleration, and jerk, as well as minimal time:

∫
t2 dt) were expressed as

functions of the lognormal parameters: µ and σ that are the log-time delay and response
time, respectively. We found that minimizing the least squared velocity, acceleration,
and jerk amounts to maximize µ and σ, which is not “physiological”. In-deed, previous



220 R. Plamondon et al.

studies proposed boundaries of µ and σ for handwriting [111]. In contrast, minimizing
time corresponds to minimizing µ and σ. Consequently, we proposed a cost function
composed of minimal jerk, kinetic energy (i.e., weighted squared velocity), and time.
Such a cost function admits aminimumwithin theµ and σ boundaries.We simulated arm
movement in the horizontal plane by minimizing this cost function. We could predict an
asymmetrical bell-shaped velocity profile of the end-effector like the one expected by
KT. The asymmetry comes from the minimum time, while the concavity of the decelera-
tion is mainly explained by the kinetic energy. The proposed cost function needs further
validation; weights could be identified using inverse optimal control.

KT has paved the way for fresh perspectives, promising to deepen our comprehen-
sion of the mechanisms underlying human motion generation and its adaptation during
fatigue-inducing tasks.

4.3 Objective Analysis of Surgical Performance thanks to a Simulator
Augmented by Artificial Vision

Context. Surgical skill assessment is essential for the continuous improvement of sur-
geons. However, current methods such as evaluation using scoring systems like the
OSATS [8] require at least one expert evaluator. This limits the frequency of assessments
and makes them prone to bias and variability.

Many methods have been proposed in the past years for the automatic and objective
evaluation of surgeons. Those methods use various data acquisition devices to capture
surgical movements, such as cameras [63, 64, 72], surgical robots [52, 110], accelerom-
eters [165], EMG sensors [148], among others. The data acquired is usually paired with
metrics evaluation algorithms or machine learning based techniques to assess surgical
skills [166].

The LeapMotion Controller (LMC) (Ultraleap Ltd, Bristol, UK) provides a low-cost
solution to capture relevant hand movement data in three dimensions (3D) through its
integrated hand-tracking software and presents a potential method to acquire kinematic
data for surgical skill evaluation.

To analyze complex patterns using kinematic data, we have exploited the Sigma-
Lognormal model which has shown validity in many fields of application [126] using
the Lognometer, a system that integrates this model to allow the acquisition and analysis
of precise 2D handwriting movements of varying complexity [49].

The aim of this study was to validate the use of the LMC to accurately capture
dominant hand movements and assess its potential to be used as a data acquisition tool
for surgical performance evaluation.

Methods. Three subjects participated in the data acquisition: one left-handed male, one
right-handed male and one right-handed female. Two different tasks were performed for
30 repetitions each, on the Lognometer. The Lognometer comprises a digital pen and
tablet (Cintiq 13HD, Wacom Co., Kazo, Japan), and captures the position of the tip of
the pen at a 300 Hz frequency.

The task execution was simultaneously recordedwith the LMC,which saves infrared
videofiles and3Dpositions of various handmarkerswith a variable acquisition frequency
(60–90 Hz). The central palmmarker coordinates were used to evaluate velocity profiles



Lognormality: An Open Window on Neuromotor Control 221

in this study, a good compromise between tracking stability, precision, and proximity to
the end-effector.

The first task was the drawing of a single stroke with the pen on the tablet after a
visual stimulus and aimed to verify the reliability of the LMC to capture fast movements.
The second task was to draw a continuous line connecting three targets to form a triangle
and aimed to verify the capability of the LMC to accurately reproduce velocity profiles
from the recorded 3D coordinates for more complex movements. Even though 2D pen
strokes on the Lognometer were compared with 3D recordings on the LMC, most of
the movement was along the 2D plane of the Lognometer tablet. The position data
from each device were used to obtain velocity profiles that were aligned and compared
one-by-one. Normalized Cross-Correlation was used to obtain a Pearson’s correlation
coefficient, quantifying the similarity between the two signals between −1 and 1.

Fig. 5. Velocity profiles from the Lognometer (dotted line) and LMC (full line) for a repetition
of the single pen stroke task (A) and the three-target triangle task (B).

Results. In total, 180 movements were recorded and compared. Figure 5 shows the
superimposed velocity profiles from both devices for an example recording of each
task. For the single pen stroke task, average Pearson correlation coefficients of 0.90 ±
0.13, 0.91 ± 0.17 and 0.98 ± 0.03 were obtained for subjects 1, 2 and 3 respectively.
Four repetitions out of 30 were partially cut for subjects 1 and 2, due to the movement
being too rapid for proper hand detection by the LMC. Excluding these outliers, the
average Pearson correlation coefficients were 0.94 ± 0.04 and 0.98 ± 0.01 for subjects
1 and 2 respectively. For the three-target triangle task, the average Pearson correlation
coefficients were 0.87 ± 0.03, 0.84 ± 0.03 and 0.91 ± 0.01 for subjects 1, 2 and 3
respectively. There were no detection interruptions for all repetitions of this task across
subjects.

Discussion. This study analyzed the LMC’s potential to be used in complex hand track-
ingmovement analysis in a surgical evaluation context. The data acquisition protocolwas
robust, and the resulting recordings were of high quality when compared to a reference
Lognometer.
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With outliers removed, the Pearson correlation coefficients obtained from the single
pen stroke task were very strong, with a total average across the three subjects of 0.97
± 0.03, signifying a close adequation as observed on Fig. 5A.

For the more complex three-target triangle task, the average Pearson correlation
coefficient of 0.87 ± 0.04 across the three subjects was lower than the coefficient of
the simpler pen stroke task, but still represents a significant similarity between the two
velocity profiles. As seen on Fig. 5B, the velocity profiles for the triangle task show
similarities in peak timing. However, differences in amplitude and shape were observed:
the second peak measured by the LMC was much higher, and less smooth. This may be
due to the fact that, unlike the Lognometer that captures movements of the tip of the pen
on a single 2D plane, the LMC captures 3D hand movement data, including pronation,
supination and varying hand placement along themovement, thereby changing the shape
and amplitude of some parts of the velocity profile due to additional movements being
detected.

Momentary loss of detection was also observed in certain recordings for the single
pen stroke task, as the LMC software cannot detect hands moving at a very high speed.
No loss of detection was observed for the triangle task, since this task requires higher
accuracy which is translated in a slower drawing speed: the slower movement allows for
reliable detection of the hand.

To fully assess the possibility to use the LMC to track 3D hand movements, its data
acquisition should be compared with devices also capable of 3D tracking. However,
even when compared with reference 2D data, similar speed profiles were achieved which
confirms the potential of the Leap Motion Controller for the purpose of surgical skill
evaluation. This data could be evaluated through the Sigma-Lognormal model, to further
compare the movements captured from both devices [116]. The lognormal parameters
extracted from the model could also be used as metrics to classify different levels of
expertise based on the quality of their movements.

Outcomes. The Ultraleap LMC is a promising tool to capture 3D kinematic data,
which could potentially be used to assess surgical performance and analyze complex
movements through the Sigma-Lognormal model.

4.4 Kinematic Reconstruction of Static Calligraphic Traces from Curvilinear
Features

Context. Most of the existing works are aimed either at a precise analysis of the kin-
ematics of a digitized input or at the segmentation of a handwriting trace into compo-
nents for biometric or pattern recognition purposes. On the other hand, our specific aim
is perceptually and artistically driven, and we seek to infer a physiologically plausible
motion from an input trace, the kinematics of which may be unavailable, such as when
using vector graphics inputs, or may be degraded or unreliable due to the poor quality of
a digitization device, such as when using low-cost tablets or trackpads. The motivation
for this approach is grounded on the hypothesis that the visual perception of marks
made by a drawing hand triggers activity in the motor areas of the brain [61, 93], and
further induces an approximate mental recovery of the likely movements and gestures
underlying the artistic production [62, 114]. We argue that this is particularly true for



Lognormality: An Open Window on Neuromotor Control 223

certain art forms such as expressed in calligraphy [60] and graffiti art [14, 99], in which
the mastery of a skillful movement in large part determines the aesthetic quality of the
resulting artefact.

In our proposed method, we first represent an input trace as a series of closely fitted
circular arcs. We then exploit this spatial and structural geometric representation to infer
the kinematics of a likely generative movement—as would be performed by a skilled
human expert or artist, as predicted by the Lognormality Principle. To do so, we rely on
the Kinematic Theory of rapid human movements [127], a family of models of reaching
and handwriting motions, in which a movement is described as the result of the parallel
and hierarchical interaction of a large number of coupled neuromuscular components.
The resulting method allows the reconstruction of physiologically plausible velocity
profiles for the geometric trace of an input movement given as an ordered sequence of
points.

Method. Our first step is to take advantage of the duality between curvature and sym-
metry axes [92] in order to extract more robustly curvilinear shape features (CSFs), such
as those based upon extrema (of some curvature measure or approximation) along a
handwriting or drawing trace. The method is also directly adaptable to open contours, to
contours with breaks in curvature, and can further be used to identify loops where a trace
overlaps itself. Each CSF is also explicitly paired with corresponding contact circles and
a pair of curvilinear support regions: contour traces on each side of an identified contact
circle or extremum, where curvature is approximately monotonic. We have introduced,
defined and described how to retrieve CSFs in recent works [13, 16, 17].

In between each contact circle segment, as a second step, we fit Euler spirals to the
trace of the support regions. Euler spirals or clothoids are a useful type of curves in which
curvature varies linearly with arc length, permitting the description of variably curved
segments which may contain an inflection. To select initial parameter values of each
Euler spiral segment, we use a secant method described by Levien [91]. We proceed to
refine this initial fit with a least squares optimisation based on the classic Gauss-Newton
method. Once spirals are optimally fitted, we can identify inflection points and obtain a
final segmentation of the entire trace as a set of circular arcs. More details can be found
in [17]. This representation of the input trace, as a series of circular arcs, is now ready
to be exploited together with the Signal Lognormal ("#) model [105, 117].

An important practical assumption is typically made when initiating the "# model:
handwriting movements are mostly made with rotations of the elbow or wrist. The
corollary is then that the curvilinear evolution of a drawing stroke can be approximated
by a circular arc. This has for consequence to simplify the computation of the angular
evolution of a stroke as represented by the "# model.

Each stroke is to be represented via aiming target locations. The initial set of aim-
ing targets (aka “virtual targets”) consists of three types of feature points or features
for short: from CSF analysis (i) recovered curvature maxima loci, and from Euler spiral
analysis (ii) inflections, and (iii) splits (of wide angled circular arcs). We can either
directly used these loci or find their nearest neighbors, on the original input trace, which
leads to slightly more accurate reconstructions. An initial estimation of the trajectory
parameters is performed using these virtual targets.

To improve the reconstruction, we adopt an iterative refinement scheme in which
we adjust the curvature and time overlap parameters together with the target positions
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in order to minimize the difference between the reconstructed and original trajectories.
We optimize the quality of the reconstruction by maximizing an error criterion based
on a signal-to-noise ratio or SNR [17]. Because we do not take into consideration the
kinematics of the input, we evaluate the quality of the reconstruction using the SNR
computed between the reconstructed and input trajectory. Our proposed method con-
sistently produces accurate (>15dB SNR) reconstructions of the input, while providing
flexibility for the use of additional constraints that can be exploited in order to generate
interactive stylizations and variations.

Discussion. The "# model directly reflects the characteristics of a smooth human
movement at the planning and neuromotor level. We therefore expect and observe that
parameter perturbations result in variations of a trace that are similar to the one thatwould
be seen in multiple instances of handwriting or drawing made by one or more subjects.
Wehave found that applying the perturbationwith a variance inversely proportional to the
temporal overlap parameters improves the legibility of the variations. This is equivalent
to imposing a higher precision requirement at trajectory locations with higher curvature,
which are known to be the most informative [53]. This is also related to the “minimum
intervention principle” [151], Suggesting that human movement variability is higher
where it does not interfere with the performance required for a task.

The smooth kinematics produced by the "# model can be exploited to generate
expressive brush renderings of the trajectory. We have designed and applied a brush
model that builds upon the assumption that the amount of paint deposited is inversely
proportional to the speed of the drawing tool. We can also sweep a texture along the
generated trajectorywithwidth also inversely proportional to speed [16],whichgenerates
patterns that are highly evocative of some instances of calligraphy aswell as graffiti made
with markers or spray paint. The trajectory generated by the reconstruction, as well as
the brush rendering parameters can be edited in real time with an intuitive user interface
[16]. Also, the resulting kinematics reproduce natural human-like movements that can
be exploited to create stroke animations of the input as well as to generate smoothmotion
paths for virtual characters or even humanoid robots [15]. Another related application
of the "# parametrization is to perform kinematic smoothing of a given trajectory [17].

5 Techniques

5.1 Separation Algorithm and Evaluation Applied to the Delta-Lognormal
Model

Context. The present paper proposed a novel algorithm to extract lognormal parameters
from handwriting gesture. The proposed algorithm is based on the branch and bound
method combined with the interval arithmetic. The general idea is to exploit intervals
arithmetic to bound the Delta-Lognormal function and its gradients and use the bounded
functions in several ways in a branch and bound global optimization. The goal is to
output the global and specific timing properties of a handwriting gesture in a unique
bounding box. New tools could then exploit the confident interval of the bounding box
to address the wide range of applications where the model can serve. The temporal
properties extracted from the pointing gesture, allows to reconstruct the velocity profile
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of the gesture and represent the planning and timing used to accomplish the pointing
gesture. The new algorithm produces a unique high-quality solution with a processing
time sufficiently short for practical applications. The accuracyof the extracted parameters
that constitute the bounding box is quantified automatically.

Methodology. Before starting to detail the proposed algorithm, some definitions
and notations need to be presented. An interval is denoted by a variable in upper case as
presented in (1).

X =
[
x, x

]
(1)

An interval vector or box is denoted by a variable in uppercase in bolt (2).

XI = (X1,X2, . . . .Xn) =
([
x1, x1

]
,
[
x2, x2

]
, . . .

[
xn, xn

])
(2)

The Basic interval arithmetic operations and the one-variable transcendental func-
tions operations are described in [19, 101].

Definition 1: The natural interval extension of a given function f (x1, x2, . . . xn) of
n variables is given by the interval function F(X1,X2, . . .Xn), which is obtained by
replacing the real variable x with the corresponding interval variable X.

Fundamental Theorem. Let F(X1,X2, . . .Xn) be the natural interval extension
of f (x1, x2, . . . xn) then f (X1,X2, . . .Xn) ⊆ F(X1,X2, . . .Xn), and for all intervals,
Y_k ⊂ X_k, f ork1 . . . ..n, f (Y_1,Y_2, . . .Y_n) ⊆ F(Y_1,Y_2, . . .Y_n),

where f (Y1,Y2, . . .Yn){f (x1, x2, . . . xn) : xk ∈ Ykf ork = 1, ..n}.
This theorem due to Moore [109] was extended and proved by Hansen [70] We use

this theorem to bound de Delta-Lognormal function as a specific sequence of interval
arithmetic operations.[19].

The global optimization problem that is considered is the following:
Minimize f (p)subjecttop ∈ PI , where f is a 7 dimensional continuously differen-

tiable function subject to p RN → R and PI ⊆ RN is a 7 dimensional interval vector.
Thus,

PI =
{[

D1,D1
]
,

[
µ
_ 1
, µ1

]
,

[
σ
_ 1
, σ 1

]
,
[
D2,D2

]
,

[
µ
_ 2
, µ2

]
,

[
σ
_ 2
, σ 2

]
,
[
t0, t0

]}
is

the bounding space.
The objective function and it’s gradient are respectively:

f
(
PI

)
∈ F

(
PI

)
=

[
F

(
PI

)
,F

(
PI

)]
=

∫
(vt(t) − %#

(
t;PI

)
)
2
dt (3)

f
′(
PI

)
∈ ∇F

(
PI

)
= F

′(
PI

)
= ∂f

(
PI)

∂PI
i

i = 1..7, (4)

! is the lognormal impulse response function. Now that we have these definitions
and notations, the proposed algorithm is called IAB&BPE which stands for Interval
Arithmetic Branch and Bound %# Parameter Extractor. IAB&BPE is formulated as
follows:
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IAB&BPE:

The details concerning the different rule can be found in [22].

Tests and Results. The algorithm has been tested using real and synthetic human ges-
tures. We developed a database comprising 9000 and 500 synthetics and real human
gestures respectively. The real gestures were acquired with a Wacom Intuos2 digitizer,
sampled at 200 Hz. The first experiment consists in testing the algorithm with synthetic
gestures. In this experiment, the algorithm was tested in its ability to retrieve the global
Delta-Lognormal parameters representing each synthetic gesture. For the 9000 synthet-
ics gestures, the algorithm always finds the solution, not only the base line target within
an accuracy of ε = 10–6, but also a confidence interval including the target value. The
second experiment has been conducted using data collected from human gestures. In
this experiment, parameters that are considered as solutions for a gesture must have an
accuracy of at least 25 dB SNR. For this criterion, the proposed algorithm converges
for all cases studied. Figure 6 shows an example of a human pen tip movement and
its corresponding original and reconstructed velocity profiles. Both the original and its
chosen reconstructed are found in the bounding box returned by the algorithm.
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Fig. 6. Example of human Handwriting strokes extracted by IAB&BPE: A. the (x, y) position of
the pen tip movement of a writer, B. the real and reconstructed velocity profile with a 31dB SNR
enclosing their envelopes, C. the reconstructed velocity profile.

Outcomes. In this paper we have shown that an interval arithmetic branch and bound
algorithms can extract the Delta-Lognormal parameter with less computational costs.
The effectiveness of the proposed algorithm is quite remarkable. This algorithm exploits
the natural interval extension and the fundamental theorem of interval arithmetic to
compute the bounding operations of the Delta-Lognormal function.

5.2 Analysis of Three-Dimensional Movements with the Sigma-Lognormal
Model

Context. The Kinematic Theory of rapid human movements [118–120, 123, 124] de-
scribes movements as a sequence of elementary strokes, which are planned in the brain
with specific execution times and distances to cover, and are then executed by the neu-
romuscular system with lognormal speed. For one-dimensional movements, the Delta-
Lognormal model [122] considers two strokes in opposed direction, an agonist and an
antagonist movement. For two-dimensional movements, the Sigma-Lognormal model
[117] considers a vectorial sum of strokes, which overlap in time. To estimate the param-
eters of the strokes, the Robust XZERO algorithm [41] is generally used to extract the
lognormal parameters from the velocity profile, complemented with an estimation of the
start and end angle of each stroke [105]. In the following, we review a recent general-
ization of the Sigma-Lognormal model to three dimensions [59, 144], which naturally
extends the model with two additional angles.

Model. In the 3D Sigma-Lognormal model [59], each stroke has 8 parameters,

s3D = (t0,D,µ, σ, θs, θe,φs,φe) (5)

where t0 is the starting time, D is the distance to cover, µ and σ are the parameters of the
lognormal speed, θs and φs are the starting angles, and θe and φe are the ending angles.
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When compared with the 1D and 2D models, the same lognormal speed

|(v(t)| = D√
2π · σ(t − t0)

exp

(

− [ln(t − t0) − µ]2

2σ2

)

(6)

is considered for each stroke. When compared with the 2D model, the angles θs, θe are
complemented with an additional pair of angles φs,φe to extend into three dimensions.
The distance travelled at time t is

d(t) =
t
∫
0
|(v(τ)|dτ = D

2

[
1+ erf

(
ln(t − t0) − µ

σ
√
2

)]
(7)

and the angles at time t are

θ(t) = θs + (θe − θs)
d(t)
D

(8)

φ(t) = φs + (φe − φs)
d(t)
D

(9)

considering a pivoting movement. The three velocity components are calculated as

vx(t) =
∑n

i=1

∣∣−→vi (t)
∣∣ sin(φi(t)) cos(θi(t)), (10)

vy(t) =
∑n

i=1

∣∣−→vi (t)
∣∣ sin(φi(t)) sin(θi(t)), (11)

vz(t) =
∑n

i=1

∣∣−→vi (t)
∣∣ cos(φi(t)) (12)

and the finalmovement is a vectorial sum over a sequence of n individual strokes−→v (t) =∑n
i=1

−→vi (t).
Parameter Estimation. The 8 parameters of the 3D Sigma-Lognormal model are

estimated from an observed trajectory as follows. First, the trajectory is preprocessed
by stopping the movement at the beginning and the end during 200ms (which leads
to a more stable estimation of the first and the last stroke), interpolating the velocity
profile with cubic splines and resampling at 200 Hz (which leads to a normalization of
the sampling rate and supports parameter estimation for acquisition devices with a low
sampling rate), and removing noise introduced by the acquisition device with a low-pass
filter.

Afterwards, strokes are estimated iteratively, one stroke at the time. They are de-
tected in the speed profile with respect to a minimum area under curve and the Robust
XZERO algorithm [42] is used to estimate the parameters of the lognormal speed. After-
wards, the estimation of the angular parameters is based on characteristic times of the
lognormal function, including the time of maximum speed and the inflection points.
They are used to estimate the velocity components in the three dimensions and calculate
the angles with trigonometric functions. For more details, we refer to [59].



Lognormality: An Open Window on Neuromotor Control 229

The model quality is measured by means of the signal-to-noise ratio (SNR)

SNR = 10 · log




∫ te
ts

∣∣−→vo (τ)
∣∣2dτ

∫ te
ts

∣∣−→vo (τ) − −→vr (τ)
∣∣2dτ



 (13)

comparing the observed velocity −→vo with the reconstructed velocity −→vr of the analytical
3D model.

Experimental Results. The 3D extension of the Sigma-Lognormal model has been
tested on two action recognition datasets, HDM05 [104] and UTKi-nect [160], as well
as an Air-Writing dataset [29]. For the HDM05 dataset, we consider a common subset
of 249 motion samples from 11 actions performed by 5 subjects, recorded with a Vicon
motion caption suit at 120 Hz. The UTKinect dataset contains 199 samples of 10 actions
performed by 10 subjects, recorded with a Kinect camera at 30 Hz. For the Air-Writing
dataset, we consider a common subset of 100 words written by 5 subjects in the air,
recorded by a Leap camera at 60 Hz.

Table 2 shows the SNR results for the three datasets. For the two action recognition
datasets, a high-quality SNR is achieved that is clearly above 15dB, which is gener-
ally considered as a quality threshold for kinematic analysis. Although the Air-Writing
results are below this threshold, the reconstructed trajectories could be used in a word
recognition experiment without significantly impacting the classification accuracy [59].

Table 2. SNR results of the 3D Sigma-Lognormal model in dB.

Database HDM05 UTKinect Air-Writing

SNR 18.52 ± 4.09 20.21 ± 4.40 12.52 ± 2.02

Outcomes.With a natural extension of the Sigma-Lognormal model to three dimen-
sions we were able to reconstruct a variety of 3D movements, recorded with different
acquisition devices, with a good model quality. The results are encouraging and open up
promising possibilities to use the Kinematic Theory in three dimensions, for example in
biomedical contexts or in robotics.

5.3 Comparison of Symbolic and Connectionist Algorithms to Correlate the Age
of Healthy Children with Sigma-Lognormal Neuromotor Parameters

Context. Motor control, a crucial skill that is progressively acquired during childhood,
profoundly influences a children’s ability to learn and live well. Traditional methods of
measuring motor control maturity, such as administered motor ability tests or behavior-
based questionnaires, often require significant human or material resources [23, 57] and
can be influenced by cultural differences. This study proposes a convenient and cultur-
ally neutral approach using handwriting, a typical fine motor control task. Employing
the Kinematic Theory of rapid human movements [118–120, 123, 124] and its Sigma-
Lognormal model [106], we extract specific parameters from children’s handwriting
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strokes on a tablet. Both this Theory and model have been used in various biomedical
applications, including analyzing graphomotor performances in kindergarten children
[45], assessing stroke risk [127], and identifying Attention-Deficit/Hyperactivity Disor-
der (ADHD) in children [79]. In this study, we extend this research and propose the use
of a tablet-based system [45] to estimate motor control maturity in children, leveraging
the Kinematic Theory. The Sigma-Lognormal model modelized the velocity profile of
movements into lognormal functions, with each function capturing distinct kinematics
related to neuromuscular commands. From each lognormal function, six parameters
are derived: {t0, D, µ, σ, θstart, θend}. Additionally, three parameters (SNR, nbLog,
SNR/nbLog) were employed to evaluate the reconstruction.

Method and Experiments
Participants. We aimed to develop a model correlating Sigma-Lognormal parame-ters
with motor control maturity in neurotypical children. A total of 513 children, aged 6
to 13 years, from three schools in the south-shore of Montréal participated in the tests.
Children with reported neurological, psychological, or motor disorders were excluded.

Sigma-Lognormal Tests. Participants performed two tests: the simple stroke test
and the triangular drawing test. For the simple stroke test, participants drew a straight
line, and for the triangular drawing test, they drew a triangle crossing three round targets.
The movements were recorded using a tablet [49].

Data Transformation. To facilitate model training, the one-hot encoding was used
to represent the orientation of stroke drawings. Clockwise angles were converted to
match counterclockwise angles.

Experiments. Different approaches were explored: training models on individual
movements, calculatingmeanmovement parameters per participant, and using all move-
ments together. Models such as Recurrent Neural Network (RNN), Multilayer Percep-
tron (MLP), Ordinary Least Squares (OLS), Ridge Regression (RR), Huber Regres-
sion (HR), Support Vector Regression (SVR), XGBoost (XGB), Random Forest (RF),
and K-Nearest Neighbors Regression (KNN) were tested and compared using nested
cross-validation.

Results. In addition to assessing the regression model’s performance using the coef-
ficient of determination (R2), mean absolute error (MAE), and root mean squared error
(RMSE) were computed to compare mean errors. The mean absolute percentage error
(MAPE) was also used to evaluate errors relative to the participants’ age.

The results, shown in Tables 3 and 4, point out significant differences in performance
between the two tests. Themodels for the triangular test outperformed the models for the
simple stroke test. The lower performances in the simple stroke test may be at-tributed
to the test’s simplicity, as even the youngest children were able to perform it well. On
the other hand, the triangular test better differentiated age-related gains in performance.
Nested cross-validations were performed, and one-way ANOVA analysis showed that
the neural networks performed significantly better than other models, particularly with
full trials.

Discussion and Future Work. The Sigma-Lognormal model proved effective in
estimating the evolution of motor control maturity with efficiency and accuracy. Even
simple linear regression yielded decent results when themovements weremodeled using
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Table 3. Regression model’s performance for the triangular tests.

Table 4. Regression model’s performance for the simple stroke tests.

the Sigma-Lognormal model. Handwriting, as a daily activity, can be easily acquired
and analyzed for health monitoring purposes.

Among the algorithms compared, GRU and SVR performed best, highlighting the
advantages of neural networks in customizing data structures to fit specific needs. How-
ever, symbolic algorithms, such as SVR, performedwell and offered explanations within
the context of the Kinematic Theory. Feature selection was not investigated in this study,
but it may impact the performance of different models [71].

Future work includes studying the kinematics of additional tests and analyzing the
original time series of movement kinematics. Symbolic algorithms may not be suit-
able for the larger dimensions of the original data, and larger neural networks may be
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preferred. Exploring self-supervised learning [163] and pre-training techniques could
optimize model performance with long sequential data. Additionally, investigating the
combination of symbolic models (Sigma-Lognormal) and connectionist models (such
as VAEs) could provide interesting insights and improve performance. This approach
could enhance the understanding of human body motions involved in handwriting.

Outcomes.
Our study presents a novel approach using the Sigma-Lognormal model and neuro-
muscular tests to predict motor control maturity in children. The complex triangular
test, analyzed with the Sigma-Lognormal model, offers parameters for simple linear
regression that accurately predict motor control maturity. Neural networks excel in
this task, but symbolic models show promises. Future research should compare alter-
native tests and assess test-retest reliability. This approach has potential for detecting
neurodevelopmental issues for children based on their motor control development.

6 Childhood

6.1 Interest of Kinematic Theory and its Lognormal Models in Assessing
Graphomotor Skills in Kindergarten and First Grade Students in France
and in Québec

Context. From a cognitive point of view, tracing letters with hand implies at least
three steps of processing: retrieving from memory the allograph (shape) of each letter,
programming the gesture allowing to trace each allograph and controlling the execution
of the corresponding motor sequence [3, 103]. Successfully implementing and operating
these processing steps requires acquiring andmobilizing a set of underlying skills such as
visuo-motor coordination (allowing the pencil guidance according to the visual context)
and graphomotor control (allowing programming and adjusting the motor realization
of a graphic gesture). Moreover, strongly dependent on lessons in school, learning to
write letters by hand is also highly constrained by the development of gross and fine
motor maturation allowing a dual function of (i) gripping the pen and (ii) using the hand,
forearm and arm working in synergy to move it and trace the letter [44, 69, 149].

The evaluation of handwriting and their underlying skills in young students is gener-
ally carried out through a set of measures mostly standardized likemotoric tests (fine and
gross evaluation scales, [131, 153]), visuo-motor tests [113, 142] and even handwriting
variables allowing to assess the legibility of a produced letter as well as the kinematics of
its production [2]. Nevertheless, regarding the graphomotor control (i.e. motor program-
ming and execution of a gesture implied in tracing or writing by hand [35]), it is clear
that few tests make it possible to evaluate this skill independently of letter production,
as other underlying skills can be approached and described independently of the written
tasks which mobilize them.

Accordingly, the objective of this article is to show how the Kinematic Theory, based
on lognormal models [118–121 and above], can constitute a relevant objective develop-
mental measure of graphomotor control of pen movements in French and Quebeckers
children, according to (i) grade level of students, from kindergarten to grade 1 and/or
(ii) a longer kindergarten prestation at school in France (3 years), compared to Quebec
(1 year).
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Method. Participants: Ninety-four students, including 47 French students and 47 Que-
bec students, of French mother tongue, participated in this study. French students were
enrolled in five primary schools in the cities of Créteil, Orléans and Chateauroux. This
French sample consisted of 27 students (including 15 girls) in kindergarten (average age
= 5.32 years, ET = 0.23) and 20 students (including 11 girls) in the first year (average
age = 6.48 years, ET = 0.18). Quebec students were enrolled in three primary schools
in the cities of Chicoutimi and Sherbrooke. Developed according to the same criteria as
the French sample, the Quebec sample consisted of 27 kindergarten students (including
15 girls) (average age= 5.35 years, ET= 0.23) and 20 first-year students (including 11
girls) (average age = 6.43 years, ET = 0.18). Each French student was matched with a
Quebecker student of the same age (to the nearest month), the same sex, the same cog-
nitive abilities (work memory and non-verbal intelligence, as assessed by background
measures not detailed here).

Measures: A series of 4mainmeasures, leading to 12 variables, have been elaborated
in order to assess handwriting abilities and their underlying motoric, visuo-motor and
graphomotor skills. (i) Motoric skills were evaluated through two tests selected from the
NP-MOT scale [153] to probe the different facets of fine and gross motor skills. Fine
motor skillswere assessed by afingertip tapping task designed to evaluate finger dexterity
(i.e. motor speed and rapid motor programming) for the left and right hand. This test
was supplemented with another evaluation dedicated to gross motor skills and consisting
in walking in a straight line, jumping from a height of 20 cm and standing on one foot
with your eyes open. (ii) Visuo-motor skills were evaluated by two complementary tests,
one measuring the ability to guide the pencil as quickly as possible between two lines
of a course (Visuo-Motor Precision, subtest of the NEPSY: [78]), the other consisting
in copying a series of figures more and more complex (Visuo-Motor Integration (VMI)
test: [11]). (iii) Graphomotor control skills were assessed by asking the four groups of
students to produce 30 pen strokes by hand, according to the protocol used in [116]. This
allowed us to extract lognormalmodels as themain components of theKinematic Theory.
This theory, developed and tested by Plamondon [118, 119, 121, 122] and Plamondon
et al., [117, 124, 126–128] is based on the assumption that all controlled movements,
be they simple or complex, are made up of basic primitives (Lognormal function) that
reflect the impulse responses of the neuromuscular systems involved in their production.

Figure 7 show the reconstruction of a specific stroke trace written with a pen by
a kindergarten pupil, by using Script Studio software. The extraction shows here the
existence of six lognormal functions, formalized by three general parameters: (i) nbLog:
number of lognormal functions required to reconstruct the signal. This parameter rep-
resents the writer’s fluidity of movement. The higher the nbLog, the less fluid the
movement; (ii) SNR: signal-to-noise ratio between the original speed profile and the
reconstructed speed profile, computed in decibels (dB). This is a measure of the quality
of the sigma-lognormal reconstruction. The higher the SNR, the better the reconstruc-
tion; (iii) SNR/nbLog: performance criterion. The ability to reconstruct a movement’s
speed profile with lognormals can be interpreted as an indicator of motor control qual-
ity, as the lognormal speed profile corresponds to complete motor control [126]. The
higher the SNR/nbLog, the closer the movement to ideal lognormal behavior. These
three parameters, by evaluating the quality of the curve-fitting, reflect the general state
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Fig. 7. Reconstruction of a specific kindergarten stroke trace

of the neuromotor system. As the Fig. 7 shows, the lognormal modeling means that the
movement as produced by the pupil was based on a sequence of six successive com-
mands, with: nbLog = 6; SNR dB) = 27.83; SNR/nbLog = 4.64. By opposite, normal
adults in perfect control of their movements would have performed the stroke by using
two lognormals. Indeed, if children use more lognormals than adults to execute a given
stoke, this number decreases as they gradually master handwriting [45]. Accordingly,
in this study, we focus on the 3 general parameters; nbLog, SNR and SNR/nbLog by
seeking to understand to what extent these parameters vary significantly with the Grade
and Country of students, under the effect of the development of maturation and different
school learning. (iv) Finally, handwriting skills were elicited by the production of famil-
iar letter allographs. Students were asked to write their firstname several times within
30 s, using their usual handwriting. This task is frequently used to assess handwriting,
as it features the best known and doubtless most automatized letter sequence, allowing
researchers to focus more purely and specifically on motor aspects [2, 5, 6, 130]. The
accuracy and fluency of letters production was assessed by the 4 following variables:
% of legible (recognizable) letters, letter accuracy fluency (legible letters per min), pen
movement speed, number of pen pauses per letters and mean pause duration.

Apparatus: The graphomotor task (tracing 30 strokes) and handwriting task (first-
name written recall) were both performed on a pen-display tablet (Wacom Cintiq Pro
13) connected to a laptop piloted by Eye and Pen© software [4]. The children wrote
directly on the surface of the tablet using a stylus (Wacom Intuos 3 Grip Pen). This
tablet records data at a sampling rate of 200 Hz, with a spatial resolution of 200 lines
per millimeter, and the software records the timing, position, and status of the pen tip
on the tablet screen in real time.
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Results. Performances of the four groups of students were analyzed by running a two-
waysMANOVA in order to determine e the main effects of the Grade (Kindergarten ver-
sus Grade 1) and Country (France versus Quebec) factors, on the 12 variables evaluating
fine and gross motricity, visuo-motor integration, graphomotor control and handwrit-
ing skills. The multivariate effect of Grade was statistically significant. More precisely,
the performance of the group of Grade 1 students, except for the number of pauses
per letter, were significantly higher than those of kindergarten for all the other measure-
ments, including the 3 lognormal general parameters: nbLog (Kindergarten: 6.36, Grade
1: 5.10; p < .01); SNR (Kindergarten: 26.68, Grade 1: 27.03; p < .01), SNR /nbLog
(Kindergarten: 5.33, Grade 1: 6.35; p < .002). The multivariate effect of Country was
also statistically significant. However, the effects for each of the variables are more con-
trasted. Thus, the group of French students (all grades combined) obtains a significantly
higher score than that of Quebecker students for the task of gross motor maturation, the
test of Visuo-Motor Integration as well as the% of legible letters in the first namewritten
recall task. On the other hand, in the case of the pen movement speed and the fluency
per legible letters score, it is the Quebecker students who attest higher performances
than those of the French students. No other significant difference appears between the
students of the two countries for the other measures, including those carried out by the
analysis of general lognormal parameters.

Discussion. If we focus here on the analysis of the general lognormal parameters,
results revealed significant differences on nbLog, SNRandSNR/nbLogbetween children
in kindergarten and first graders. The mean value of nbLog was statistically lower for
children in first grade than for children in kindergarten, and consistent with this, themean
values of SNR and SNR/nbLog were higher. Indeed, when first graders want to draw
a line, they have more fluidity than kindergarten pupils, as reflected in a lower nbLog.
Moreover, the quality of stroke reconstruction is better inGrade 1 than in kindergarten, as
SNR and SNR/nbLog were significantly higher for the first graders, owing to improved
neuromotor control and lognormalitywith age. It can be then argued that children’smotor
control improves as they grow older, as predicted by the Principle of Lognormality and
the Kinematic Theory.

Moreover, the results of this study bring out two important facts. First, the extraction
of Lognormal parameters from a relatively simple task (e.g., drawing 30 strokes) makes
it possible to highlight coherent developmental differences between kindergarten and
first grade, and this, in consistency with the effects observed for the other skills, actually
motor and visuo-motor, involved in the development of handwriting. In this sense, the
“stokes tracing task”, independent of the tracing of letters, combined with the extraction
of lognormal models, could be an interesting avenue to explore, in order to constitute a
standardized and predictive test, in the long term.

Second, interestingly, lognormal parameters are here sensitive to grade level but not
to country of schooling, unlike other abilities like gross motor maturation or visuo-motor
integration. This result suggests that Lognormal modeling probably makes it possible
to approach rather the neuromotor component of graphomotor control, which should
be, as well as finger tapping performance, more strongly dependent on proximo-distal
maturation than on school training.
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Outcomes. Finally, if Kinematic Theory and its Lognormal models seems to represent
an interest for assessing graphomotor control in young pupils, it remains to assess to
what extent the fluidity of the gesture, when drawing a series of stokes, could be related
to the dynamics of drawing letters and words, and more particularly to the frequency
and duration of pen stops (pauses), supposed to indicate difficulties in controlling the
execution of the strokes making up a letter [37, 112]. The presence of such a relation
between strokes and letters could be investigated by applying the lognormal modeling to
the production of letters of the alphabet and of the firstname, in addition to the production
of a series of strokes.

6.2 The use of the Lognormality Principle for the Characterization and Analysis
of Graphomotor Behaviours Involving Young Learners in a School Context

Context. Children learnings suppose successful mobilizations of specifical graphmo-
tor gestures (GG) as pointing, drag and drop and handwriting since their beginning at
kindergarten around 2–3 years old. Earliest mastery of each of these GG in various
contexts is fundamental because they are involved by most of the scholar tasks that
must be executed into tangible or digital ecosystems. The lognormality of adult’s expert
graphomotor behaviors and a tendency to a gradual migration to this optimal lognormal
behavior through development and training have been established and validated thanks
to the sigma-lognormal modeling of GG of kindergarten apprentice scripters and adults
[136]. However, the GGs considered had been acquired in a strict clinical framework
by considering psychomotor tasks quite different from real school tasks. This raises the
question of the possibility of extending these conclusions to the cases of GG specific to
school constraints, carried out and acquired in the less strict context of tasks of a school
nature. To answer this question, we have conducted experiments in a school context for
nearly a decade with the aim of answering the following questions: Is the reconstruc-
tive power of sigma-lognormal modeling, that was observed in strict clinical cases of
rapid plotting of simple trajectories, robust enough to withstand the school environment
noise and its constraints? Does considering the sigma-lognormal modeling of realistic
and more complex traces than those considered in the clinical case makes it possible
to distinguish levels of expertise in terms of levels of motor control acquired thanks to
school training?

Methodology. To answer these questions, we exploited types of graphomotor gestures
carried out in school activities collected during several experiments conducted on school
time in fifteen schools from primary to secondary between 1997 and 2019.

These GGs were carried out by more than a thousand all-comers, aged 3 to 14 years
and enrolled from the first year of kindergarten to the third class of middle school. Some
of them were made in a tangible environment in paper-and-pencil on paper mode. They
were acquired online as described in [46] thanks to several models of Calcomp and
Wacom digitizers, driven by the Dekat’tras application, placed as a plotting support.
Others were made and acquired online directly in a digital learning environment based
on the platform Copilotr@ce [140]. Some of these school GGs were produced using an
ink pen or non-ink writing tool, while others were produced by finger.
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Various activities including spontaneous or constrained scribbling [136–138] for 20
s, tracing on predefined trajectories, copying isolated patterns from alphabets [45] or
cursive words, writing common isolated words such as first name, days of the week
under various conditions [139], were offered to students.

For each of the types of graphomotor gestures acquired, the batch processing proce-
dure of the ScriptStudio tool exploiting the Robust X-Zero approach [105] was used to
perform sigma-lognormal modeling of curvilinear velocity profiles and approximation
in 2D space of the trajectory executed by the pupils. Two global kinematic parameters
were then extracted. The first of these parameters, called nbLog, is an integer value. It
specifies the number of lognormals needed to reconstruct the speed and trajectory with
a signal-to-noise ratio defining the value of the second parameter extract-ed. This one is
called SNR. From these two parameters a third: the SNR/nbLog ratio, was estimated for
each type of GG considered. Then, acceptable rates of good reconstruction, i.e., with an
SNR greater than or equal to 15dB, were established. Next, the distribution of SNR was
determined for each grade level represented in the cohort of students who participated in
the collection of the type of GG considered. Finally, the behavior of each of these three
parameters according to grade level and, for some, according to the constraints imposed
by the task to be carried out, was tested by means of statistical tests.

Main Results. A great majority of GGs acquired under real conditions at school,
whether on graphic or touch tablets and all models of equipment combined, has been
rebuilt with an SNR greater than or equal to the minimum threshold of 15 dB. This, in
spite of their complexity, duration, continuous or not and the grade level of the pupils
whose produced them.

This first observation makes it possible to validate the robustness of Sigma-
Lognormal modeling (SLM) for use for the analysis of real childish graphomotor behav-
iors in the school context. This robustness is verified although the school context is more
prone to disruptions in the operating conditions of the SLM than clinical environments
are. The use of SLM is also possible from the first years of schooling and throughout pri-
mary and secondary schooling. This, by directly considering GG produced along usual
pedagogical activities.

The second observation relates to the distribution of SNR values according to the
degree of experience in the implementation of school GG translated by the pupils’ grade
levels. Regardless of the type ofGGconsidered, it turns out that the higher the educational
level, the higher the rates of high SNR values and the lower the rates of low values of
SNR. Conversely, in the case of a low educational level the rates of low SNR values are
higher.

Discussion. These results therefore argue in favor of the validation of the possibility
of observing the principle of migration to lognormality according to effects of school
trainings from kindergarten up to at least end of middle school and this, for most GGs
taught and mobilized by the school.

Based on such results, it becomes possible to set up individual monitoring of the
progression of the pupils’ level of motor control during their school cursus thanks to the
observation of the evolution of the SNR for each type of school GG.

By virtue of the Principle of Lognormality it is possible to postulate that at equiva-
lent SNR level for an analogous type of graphomotor gesture, the higher is the number
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of lognormals the more this ratio tends towards 0 which reflects a lower quality of motor
control of the graphomotor gesture mobilized during the proposed task. Conversely, the
lower is the number of lognormals, the higher this ratio will be, which will reflect a
better motor control capability of the GG during the task.

Outcomes. The non-conservation of high SNR as so as inconsistent SNR/nbLog ratios
between various constrained situations of scribbling and writing words while SNR
remain high tend to show that the global parameters SNR and SNR/nbLog can play
role of gauges of shortcomings in automating the planning and execution procedure of
the types of GG concerned.

Therefore, a non-invasive and transparent monitoring of motor control growing
seems feasible by comparing the values of these three global parameters directly through
various real pedagogical situations at school. Such monitoring should also help teachers
to decide on objective and quantifiable bases whether to continue, maintain or strengthen
the use of some pedagogical approaches to learn school GGs.

However, to achieve such tools, solutions to quickly compute those parameters are
needed.

6.3 Lognormality in Children with Mild Traumatic Brain Injury: a Pilot Study

Context. Pediatric traumatic brain injury (TBI) is a public health burden and the leading
cause of disability worldwide [159]. Each year, millions of children sustain TBI, with
mild traumatic brain injuries (mTBI) and concussions accounting for more than 90%
of all TBI cases. Previous studies have shown that 15–30% of children with mTBI
continue to experience PCS for several months following injury, which in turn can
result in functional deficits and declines in quality of life [10, 102, 162]. However,
there is currently a lack of accurate objective and developmentally appropriate tools to
sensitively assess fine motor skills after mTBI. This pilot study investigates whether
the Sigma-Lognormal model proposed by the Kinematic Theory can be used to detect a
difference between simple handwriting gestures performed by children at different times
after experiencing mild traumatic brain injury (MTBI) [48, 50].

Method. Participants included children and adolescentwho presented to the two tertiary
care pediatric hospital (i.e., Montreal Children’s Hospital and CHU Sainte-Justine). 90
children and adolescent were initially recruited to the sub-study, but complete data was
only available in 32 participants, aged 6 to 18 years old, with mild brain injury.

Each participant had to draw fast single strokes, one at a time, following a visual
reaction time protocol. After the test, every participant should have produced 30 valid
strokes. The trials were recorded at 100 Hz using a tablet digitizer (Wacom Intuos2).
Every stroke had to begin from a starting point located at the middle a guide sheet, and
to end at one of the sides of the sheet, as depicted in the Fig. 8.
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Fig. 8. The guide sheet

The direction side was set depending of the laterality of the participant. They were
asked to produce handwriting strokes on a digital tablet at 1 month and 3 months after
sustaining the injury. The Sigma-Lognormal model was used to analyze the executed
movements.

The classification was done using the evolution of each parameter over time for
each subject. To determine if the change in parameters is evolving positively, there has
to be a significant statistical difference between the 1- and 3- months mean post-injury.
Participants were considered as having an improved neuromotor system state when there
was a decrease in the mean value of the following parameters: all rescaled t0, first t0, σ,
number of rejected strokes, D and nbLog. Similarly, participants had a better neuromotor
system state after 3 months post-injury if there was an increase of the mean value of the
following parameters: µ, SNR and SNR/nbLog.

To measure the somatic, cognitive, emotional, and fatigue/sleep-related symptoms
present in each participant, parents were asked to complete the Post-Concussion Symp-
tom Inventory (PCSI) [167] to document their child’s symptoms. The parent-report
version of the PCSI consists of 26 items, where responses are rated for severity on a
7-point Likert scale (i.e., from 0 to 6; 0=Not a problem, 6= Severe problem).We exam-
ined how the number of reported symptoms, as endorsed on the parent PCSI, progressed
over time. Specifically, the total score obtained on the parent PCSI (i.e., total number of
symptoms) for each participant was compared at 1-month and 3-months post-injury. To
this end, the children were placed in 4 different categories according to the evolution of
their condition: Improvement, Deterioration, Stabilization and No judgement.

Results. This model showed significant differences between the set of traits produced
by participants when comparing their results at 1 and 3 months post-injury. Of the 32
participants, 28 of them have significant differences for at least 1 lognormal parameter.
We notice an improvement in the quality of the traits achieved over time. For example,
there were 17 participants who had a significant difference, with the Bonferroni correc-
tion, for the SNR/nbLog. Only four of the participants showed no significant change
during this period.
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By examining PCSI quality-of-life questionnaires including the child’s responses as
well as those of the parents 1 month, 3 months after sustaining a concussion, the child’s
state of health were analysed to see how quality of life had changed during this period.
There was a match between the parents’ and the children’s responses for 19 of the 32
children. In the case of 4 children, no judgement can be made for lack of data. In the case
of 3 children, there was a contradiction between the child’s answers and those of the
parents, one stipulating an improvement and the other a deterioration. In the case of 6
children, there was a contradiction between the child’s answers and those of the parents,
one stipulating an improvement or deterioration, while the other stipulates a stable state.

Comparing the results of the PCSI questionnaire with those of the pencil line test,
the results match for 9 out of 32 children. For the rest of children, however, the results
did not match. For the 9 children where there was a match, 6 were improving, 2 were
deteriorating and 1 was stable. In the other cases, there was a contradiction be-tween the
child’s and parent’s answers, where one of the two answered that the child’s condition
had remained stable over this period of time. For the children for whom there was no
correspondence between the results of the pencil line test and the PCSI questionnaire,
for 7 children, the pencil line indicated an improvement in the child’s condition, whereas
the PCSI questionnaire indicated the opposite. For 9 children, the pencil test pointed out
a stabilisation whereas the PCSI questionnaire indicated stability, the inverse for 2 and
one case was non conclusive.

Outcomes. By comparing the results of the PCSI answers and the Sigma-Lognormal
analysis, a concordance was observed between the two tests for only nine (32%) of
the participants. This is not surprising as the PCSI questionnaire and Sigma-Lognormal
parameters assess different aspects of functioning, and thus, are likely to yield different
patterns of results. First, post-concussive symptoms were documented using subjective
parents’ reports on questionnaire, and it has been previously suggested that parents of
childrenwithmTBImay tend to over-report symptomsof their children onquestionnaires
[18]. Second, the Sigma-Lognormal analysis is an objective methodology based on
the Lognormality Principle. It could be used to ponder subjective reports and provide
unbiased data to confirm or infirm the evolution of the mTBI. In this perspective, these
preliminary results will serve as a basis for further research into the benefits of using
the Sigma-Lognormal model for the assessment of the integrity of neuromotor systems
after traumatic brain injury in children.

6.4 Kinematic Analyses of Rapid Pencil Strokes Produced by Children
with ADHD

Context. Most childrenwithADHD (AttentionDeficit Disorder with or without Hyper-
activity) have problems with gross and/or fine motor skills [75]. Children with ADHD
often have greater difficulty planning and programming theirmovements effectively than
their non-ADHD peers [47, 142, 161]. A proper assessment of the motor and grapho-
motor skills of children, whether they have ADHD or not, seems relevant to guide
intervention in the face of these problems and to better understand the nature of motor
difficulties in ADHD. The kinematic analysis of writing movements can be used to
study the factors involved in motor control and fine motor skills [41, 42, 106, 120, 125,
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157]. When a person writes on a digitizer, the coordinates of their pencil movement are
transformed into a velocity profile fromwhich an analysis can reconstruct the movement
with its corresponding sequence of lognormals. This theory uses the stroke to understand
how motor control processes movement execution. According to the Kinematic Theory,
when someone controls its movement, their velocity profiles will tend to approximate
lognormality [126].

In the present study, the Sigma-Lognormal model was used to obtain a detailed
description of children’s pencil stroke velocity profiles. The first objective was to assess
whether the parameters obtained from Sigma-Lognormal modeling of the fast pen
stroke velocity profiles could effectively differentiate between children with and with-
out ADHD. The hypothesis states that the quality of handwriting movement would be
inferior in children with ADHD, particularly those with more severe symptoms. The
second aim was to investigate the correlation between the lognormal motor behavior
of children with ADHD and their performance on other assessments of graphomotor
and fine motor skills. The anticipated hypothesis was that lognormal parameters would
exhibit a relationship with measures of handwriting speed and accuracy, as well as fine
motor skills. Lastly, the potential of lognormal parameters to enhance the accuracy and
specificity of ADHDdiagnosis was examined, with the expectation that these parameters
would successfully distinguish between children with and without ADHD.

Methodology. 24 children aged 8 to 11 years took part in this study: 12 with ADHD and
12without. The children took several psychometric tests: theWechsler Intelligence Scale
for Children – 4th Edition (WISC-IV¼ [156], the Pen Stroke Test (PST) on digitizer, the
BHK (Échelle d’évaluation rapide de l’écriture chez l’enfant) [28], the Purdue Pegboard
[150], the Finger Tapping Test (FTT) [143] and the TWISC-IV- Coding subtest [156].
The questionnaires completed by the parents assessed the presence of inattention and
hyperactivity/impulsivity behaviours and of developmental coordi-nation disorders.

An optimal algorithm was used to extract the Sigma-Lognormal model parameters
from the PST. For each child, the mean value of the following parameters for the 30
strokes was used in the analyses [79]. The signal-to-noise ratio (SNR) between the orig-
inal velocity profile and the reconstructed velocity profile measures the quality of the
Sigma-Lognormal reconstruction. The number of lognormal functions required to recon-
struct the original velocity profile (nbLog) represents the fluidity of movement of the
participant. Other parameters can be obtained from analyzing the participants’ grapho-
motor behavior. Two parameters represent the neuromotor action plan. Time required
(t0; in seconds) for the brain to produce a motor command. The amplitude of the move-
ment (D) associated with each motor command, in millimeters, is the distance planned
to be covered by the pen for each lognormal.

Results. Independent measures t-tests carried out on the PST parameters revealed a
significant inter-group difference on SNR/nbLog. This parameter indicated significantly
poorer quality ofmotor control in theADHDgroup.MeannbLogwas significantly higher
for the ADHD group (t= 3.475; p= 0.002), which indicated that more lognormals were
required to reconstruct the pen stroke signal and that the children’s movements were less
fluid. A significant inter-group difference was found also in terms of t0. This parameter
was greater for the ADHD group, indicating a longer delay for command preparation (t
= -3.607; p= 0.002). In addition, the D parameter was significantly smaller the ADHD
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group (t = 2.306; p = 0.031), which reflects a smaller movement amplitude in their
action plans. No significant difference was observed on the other parameters. Variability
in values obtained for the PST parameters was calculated for each child and the groups
were then compared. Mean SNR/nbLog variability was greater for the ADHD group (t
= -2.975; p= .007) This suggests that the ADHD group had greater variability in motor
control across pen strokes. Intra-individual variability was not significantly different
between groups on any other parameter. The area under the ROC curve (AUC) was
calculated to assess the capacity of PST parameters to discriminate between the ADHD
and control groups [68]. An AUC of 1 indicates a perfect diagnostic test, whereas an
AUC of .5 indicates a test performing at chance level, that is, unable to discriminate
between two groups (Hajian- Tilaki, 2013). The AUCwas 0.87 for SNR/nbLog; 0.84 for
t0; 0.91 for nbLog; and 0.79 for D. In other words, these four parameters discriminated
between the two groups. The AUC for nbLog was significantly greater than the AUC
for D (p= 0.032), indicating that nbLog can better discriminate between the two groups
than D. A correlation was found between t0 and writing speed as measured by the BHK
in the ADHD group (r = -0.67; p = 0.018) indicating that the faster a child wrote,
the shorter the motor command production delay (t0). In the ADHD group, nbLog was
negatively associated with performance on the WISC-IV Coding subtest (r= -0.64; p=
0.024) and the FTT (r = -0.64; p = 0.026). As such, the number of lognormals needed
to reconstruct the strokes was associated with lower scores on these two tests. In the
ADHD group, a correlation was observed between D and the FTT (r= 0.81; p= 0.002)
indicating that greater amplitude of movement on the PST was associated with faster
motor speed. In the control group, a significant correlation was found between SNR
and the total score on the BHK (r = -0.80; p = 0.002) indicating that higher SNR is
associated withmore controlled handwriting. Finally, a significant correlation was found
for the control group between SNR and the scores on the Purdue Pegboard task (r =
0.59; p = 0.043) indicating that higher SNR is associated with better manual dexterity.

Outcomes. This study explored the usefulness of the PST in evaluating fine motor skill
impairment in children with ADHD. The Kinematic Theory of rapid human movements
and the Sigma-Lognormal analysis allowed the use of objective parameters obtained
from reconstructing fast pen stroke movements as indicators of child motor control
capacity [79, 116]. A significant difference emerged between children with and without
ADHD on four PST parameters: SNR/ nbLog, nbLog, t0 and D. Moreover, children
with ADHD demonstrated greater intra-individual variability in quality of motor control
(SNR/nbLog). This suggests that children with ADHD are less able than peers without
ADHD to control a single stroke. The results indicate that children with ADHD may
have a graphomotor skill impairment at the level of motor planning, as reflected by
longer t0 and smaller D, as well as, at the execution level. The PST, based on the Sigma-
Lognormal analysis, shows promise as it may offer a fast and effective way of detecting
motor skills problems in children with ADHD and may contribute to refining ADHD
diagnosis. Together, the findings suggest that it may be important to include assessment
of motor and graphomotor skills in the clinical evaluation of children with ADHD.
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6.5 Screening for Developmental Problems in Preterm Born Children: Utility
of the Pen Stroke Test During the Preschool Period

Context. Yearly in Canada, about 8% of all live births occur prematurely, i.e. before
37 weeks of gestational age (GA). Among these preterm births, approximately 90%
occur between 29 and 36 weeks’ GA. Children born at 29–36 weeks’ GA display physi-
ological immaturity and instability making their developing brain vulnerable to various
insults related to preterm birth complications and treatments [21, 134], thus increasing
the risk for developmental problems, including attention deficit and hyperactivity dis-
orders, developmental coordination disorders or difficulties with writing skills [7, 33,
76, 145, 154]. In kindergarten, 34–40% of children born between 29–36 weeks’ GA
have ≥1 area of vulnerability for school readiness (i.e., the developmental abilities and
behavior necessary to meet school demand) due to NDD, a red flag for future learning
challenges [94]. Rehabilitation services, if timely implemented, can optimize academic
achievement by addressing educational needs prior to school [31, 74]. In this perspec-
tive, early identification of children born between 29–36 weeks’ GA at highest risk of
learning challenges is crucial.

We previously recruited 241 children born between 29–36 weeks’ GA to test a
developmental screening protocol combining biological and clinical markers assessed
from birth to 4 months CA to identify those at higher risk of NDD at 2 years CA. Now
that this cohort is growing beyond the toddler years, longitudinal follow-up is necessary
as 2-year outcomes may not be sufficient to predict long-term neurodevelopment [45].
Moreover, the dynamic process of brain development may uncover emerging signs of
dysfunctions that could be identified. To this end, a non-invasive, rapid, unexpensive
and easily available screening instrument is necessary. The Pen Stroke Test [45, 79]
(PenStroke), developed by R. Plamondon, responds to these criteria, but needs to be
validated first.

The PenStroke consists in producing handwriting strokes on a computerized inter-
face which are then analyzed using the sigma-lognormal model [105, 117]. This model
provides 2 parameters describing the general state of the neuromotor system and the
quality of the modeling: the number of lognormals (nbLog) and the measure of the
quality of the sigma-lognormal reconstruction, or the Signal-to-Noise Ratio (SNR). A
stroke that approaches the ‘perfect’ model is made up of 2 lognormals; the higher the
nbLog, the lesser is the motor control. In contrary, the higher is the SNR, the better is
the fitting and the motor control. Evidence supports the utility of the PenStroke param-
eters to discriminate levels of graphomotor performance achieved by children aged 3 to
5 years [19]. Performing the PenStroke as screeningmeasures prior to school entry could
improve the clinical discrimination of preterm children born at 29–36 weeks’ GA at risk
of NDD. However, the screening accuracy of this tool in preterm preschool children
needs to be determined.

The overarching aim of our research program is to improve early identification of
NDD in preterm children born at 29–36 weeks’ GA. The current study specifically aims
to examine the concurrent accuracy of the PenStroke in identifyingNDDat age 4.5 years.
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We hypothesize that the PenStroke parameters will correlate with neurodevelopmental
skills at 4.5 years of age and will enhance our developmental screening protocol in
predicting neurodevelopment prior to school entry.

Methods. We are currently conducting a prospective longitudinal follow-up study of
an established cohort. All participants from the initial cohort (n = 241) were recruited
at the Centre Hospitalier Universitaire Sainte-Justine (CHUSJ). Children aged 4.5 yrs
old (±3 mo) still enrolled in the initial study (217/241 children), in which inclusion
criteria were birth between 29–36 6/7 wks’ GA and admission for ≥48 h in the NICU,
are eligible, but those under child protection services (for consent issues) are excluded.
Recruitment will run betweenMarch 2023 andMay 2027 as children of our cohort reach
4.5 years old. Data are collected at a 4.5-year-old visit at CHUSJ research center. The
PenStroke is first administered and then followed by a neurodevelopmental assessment.
Both are conducted by trained research assistants blinded to participant’s history. For
the PenStroke, three simple movements on a digitizer (Wacom Cintiq 13HD, digitized
at 200 Hz) are completed. The first 2 movements consist of making 30 rapid pen strokes,
each time, between a starting zone, identified by a black point, and an arrival zone
displayed in gray. The first time, a sound cue (at 1 kHz for 500 ms) emitted by the
computer is the go signal for the child to execute the movement and the second time, a
green visual stimulus is used as the cue. The thirdmovement consists in drawing a triangle
30 times by connecting three points displayed on the screen. These tests generate optimal
parameters to express the quality of the neuromotor control of the upper limb. A global
optimal algorithm is used to extract the sigma-lognormal model parameters (nbLog
and SNR). The whole process is synchronized with Sign@medic, an in-house program.
The neurodevelopmental assessment includes 9 standardized tests covering intellectual
functioning, attention, language, motor skills, behavior, and adaptive functioning. For
this study, NDD will be defined as 2 or more test scores (out of 9) that fall 1 standard
deviation below the mean. Concurrent accuracy of the PenStroke will be determined by
Receiver Operating Characteristic curves.

PreliminaryResults. Todate, from the 23 families contacted, 19 accepted to participate
(83%) and 12 visits have been completed at a mean age of 4.4 years old (+/− 0.2).
Data collection was complete for all assessed participants. For all 12 participants, we
were able to reconstruct the recorded movements produced by the children using the
Sigma-Lognormal model and to extract the parameters. Figures 9A and 9B show 2
examples of the reconstruction with the auditory stimulus: 9A from a child with a better
motor control than the one pictured in 9B. Overall, the ratios between the SNR and the
nbLog seem to vary between participants as shown in Fig. 10, supporting the use of the
Sigma-Lognormal model to characterize preschool children motricity. Next steps will
involve further data collection and the analysis of the associations between the Penstroke
parameters and the neurodevelopmental profile of the participants.
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Fig. 9. (A) Reconstruction with auditory stimulus, (B) Reconstruction with auditory stimulus

Fig. 10. Mean performance of the participants with the auditory stimulus

Expected Outcomes. Integrating the PenStroke at 4.5 years old to our developmental
screening protocol could enhance the clinical discrimination of preterm children born
at 29–36 weeks’ GA at risk of NDD before school entry and optimize support prior to
school entry.

6.6 Exploring the Benefits of Virtual Reality Lognormality Analysis
for Diagnosing ADHD in Children

Context. At least 15%of the childrenwith learningproblems experience anxiety, depen-
dency and depression, leading to loss of motivation and, in the worst cases, dropping out
of school. Treatment of these cases is often costly and there is a shortage of professionals
to provide follow-up care. It is estimated that it costs a minimum of $60,000 per child
in Canada to carry out these diagnoses and their follow-ups.

A New Tool. To tackle these problems, the AeoVR team (https///aleovr.com) is devel-
oping an educational tool in the form of virtual reality (VR) experiences that aim to
support the development of school-aged children with learning disabilities. The spin-off
company proposes a set of adapted challenges, a series of virtual reality games based
on exercises used by Ortho pedagogy clinics. For example, to increase participation and
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motivation, interactive and immersive exercises to stimulate fun and motivate learning
are used. The system offers a personalized and adapted environment to foster academic
development in an appropriate virtual world based onmonitored stimuli. Detailed reports
are provided to track progress and facilitate communication between the various parties
involved. Figure 11 shows the basic VR data capture.

Fig. 11. VR data capture system

A Proof of Concept for VR Lognormality Study. Among the various improvements
that AleoVr is exploring, stands the integration of a 3D lognormality analysis package to
evaluate, characterize andmonitor the child performances. A preliminary study has been
run that check this hypothesis. The right-hand x(t), y(t), z(t)coordinates of 13 participants
aged between 19 and 63 were recorded. Each of the volunteers had to touch: 1. A cup
on a table at about 1m from the floor, 2. The corner of table located approximately at
1m from floor, 3. A chair at approximately 30 cm from floor, 4. A tree house visible in
the distance which was requiring an extension of the arm of approximately 30 cm above
the eye level, 5. Their left shoulder whose distance was depending on the size of the
participant. Each movements had to be repeated twice.

The ten gestures per participant were reproduced using the 3D Sigma-Lognormal
extractor [59, 145] and the quality of the reconstruction was computed as a feasibility
measure. The SNR were always above 15dB, (the accepted threshold for considering a
movement as made up of lognormals) with a mean value of 23.4 ± 3.2 dB.

Expected Outcomes. These very preliminary results confirm that the 3D Sigma-
Lognormal model can be used to extract neuromotor parameter from complex 3Dmove-
ments collected with a VR system and that it could be exploited for developing objective
numerical metrics to study these gestures.

7 Conclusion

Looking back and ahead at the numerous applications that involve lognormality, it
becomes more and more implicit that this emergent property stands among the uni-
versal behaviour that has emerged through the evolution of species, the central limit
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theorem slowly but surely acting as a growth force. Lognormals have been found and
used as hidden primitives in numerous applications dealingwith healthy and non-healthy
subjects, ranging handwriting analysis and recognition [20, 51], signature verification
[37, 38, 58], signal processing [43, 67], human-machine interfaces [87, 90, 96, 152]
and biomarker definition [84] as well as for speech processing [25, 27]) and for Turing
tests [88, 89]. We have summarized in this special session a subset of these applications,
focusing on those presented in French at ACFAS 2023. Many other studies are going on
in e-Security, e-Learning and e-Health [126, 129], and new fields are also expected to
develop providing for examples a new set of functions for 2D and 3D smoothest curve
modelling, anthropomorphic arm design, exoskeletons and prosthetics control, human-
like movements modelling of virtual reality objects. Moreover, applications for fish [55,
141], farming [40] and robots [38, 39, 97, 132] are under investigations. By extending
the range and significance of the Lognormality Principle these applications may, in the
long run, cement lognormality as a fundamental law of nature.
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