Temporal regression using Hierarchical Hidden Markov Models. More...
#include <rapidXMM.h>
Public Member Functions | |
rapidXmmHmr (xmmToolConfig cfg=xmmToolConfig()) | |
~rapidXmmHmr () | |
std::vector< double > | run (const std::vector< double > &inputVector) |
![]() | |
virtual | ~xmmTemporalTool () |
![]() | |
virtual | ~xmmStaticTool () |
![]() | |
virtual | ~xmmTool () |
virtual bool | train (const rapidmix::trainingData &newTrainingData) |
virtual bool | reset () |
virtual std::string | getJSON () |
virtual void | writeJSON (const std::string &filepath) |
virtual bool | putJSON (const std::string &jsonMessage) |
virtual bool | readJSON (const std::string &filepath) |
Additional Inherited Members | |
![]() | |
xmmTemporalTool (xmmToolConfig cfg, bool bimodal) | |
![]() | |
xmmStaticTool (xmmToolConfig cfg, bool bimodal) | |
![]() | |
xmmTool (bool bimodal) | |
virtual void | preProcess (const std::vector< double > &inputVector) |
Json::Value | toJSON () |
bool | fromJSON (Json::Value &jm) |
![]() | |
xmm::HierarchicalHMM | model |
xmm::TrainingSet | set |
Temporal regression using Hierarchical Hidden Markov Models.
|
inline |
|
inline |
std::vector< double > rapidXmmHmr::run | ( | const std::vector< double > & | inputVector | ) |