Rapid-Mix API  v2.2.0
A simple library for machine learning & signal processing
rapidmix::machineLearning< MachineLearningModule > Class Template Reference

Host class for machine learning algorithms. More...

#include <machineLearning.h>

Inheritance diagram for rapidmix::machineLearning< MachineLearningModule >:
Inheritance graph
Collaboration diagram for rapidmix::machineLearning< MachineLearningModule >:
Collaboration graph

Public Member Functions

 machineLearning ()
 
template<class T >
 machineLearning (T type)
 
bool train (const trainingData &newTrainingData)
 This function becomes specialized in the implementation. More...
 
std::vector< double > run (const std::vector< double > &inputVector)
 
std::string run (const std::vector< double > &inputVector, const std::string &label)
 
std::string run (const std::vector< std::vector< double > > &inputSeries)
 
bool reset ()
 
template<>
bool train (const trainingData &newTrainingData)
 
template<>
bool train (const trainingData &newTrainingData)
 
template<>
bool train (const trainingData &newTrainingData)
 
template<>
bool train (const trainingData &newTrainingData)
 
template<>
std::string run (const std::vector< double > &inputVector, const std::string &label)
 
template<>
std::string run (const std::vector< std::vector< double > > &inputSeries)
 

Detailed Description

template<typename MachineLearningModule>
class rapidmix::machineLearning< MachineLearningModule >

Host class for machine learning algorithms.

Constructor & Destructor Documentation

§ machineLearning() [1/2]

template<typename MachineLearningModule >
rapidmix::machineLearning< MachineLearningModule >::machineLearning ( )
inline

§ machineLearning() [2/2]

template<typename MachineLearningModule >
template<class T >
rapidmix::machineLearning< MachineLearningModule >::machineLearning ( type)
inline

Member Function Documentation

§ reset()

template<typename MachineLearningModule >
bool rapidmix::machineLearning< MachineLearningModule >::reset ( )
inline

§ run() [1/5]

template<typename MachineLearningModule >
std::vector<double> rapidmix::machineLearning< MachineLearningModule >::run ( const std::vector< double > &  inputVector)
inline

§ run() [2/5]

template<typename MachineLearningModule >
std::string rapidmix::machineLearning< MachineLearningModule >::run ( const std::vector< double > &  inputVector,
const std::string &  label 
)

§ run() [3/5]

template<typename MachineLearningModule >
std::string rapidmix::machineLearning< MachineLearningModule >::run ( const std::vector< std::vector< double > > &  inputSeries)

§ run() [4/5]

template<>
std::string rapidmix::machineLearning< classification< double > >::run ( const std::vector< double > &  inputVector,
const std::string &  label 
)

§ run() [5/5]

template<>
std::string rapidmix::machineLearning< seriesClassification< double > >::run ( const std::vector< std::vector< double > > &  inputSeries)

§ train() [1/5]

template<>
bool rapidmix::machineLearning< classification< double > >::train ( const trainingData newTrainingData)

§ train() [2/5]

template<>
bool rapidmix::machineLearning< regression< double > >::train ( const trainingData newTrainingData)

§ train() [3/5]

template<>
bool rapidmix::machineLearning< seriesClassification< double > >::train ( const trainingData newTrainingData)

§ train() [4/5]

template<class MachineLearningModule >
bool rapidmix::machineLearning< MachineLearningModule >::train ( const trainingData newTrainingData)

This function becomes specialized in the implementation.

Generic train.

§ train() [5/5]

template<>
bool rapidmix::machineLearning< rapidGVF >::train ( const trainingData newTrainingData)

The documentation for this class was generated from the following files: