Rapid-Mix API  v2.2.0
A simple library for machine learning & signal processing
machineLearning.h File Reference
#include "rapidMix.h"
#include "classification.h"
#include "regression.h"
#include "seriesClassification.h"
#include "rapidXMM.h"
#include "rapidGVF.h"
Include dependency graph for machineLearning.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

struct  rapidmix::runResults_t
 A generic ouptut struct to fit all kinds of models. More...
 
class  rapidmix::machineLearning< MachineLearningModule >
 Host class for machine learning algorithms. More...
 

Namespaces

 rapidmix
 

Typedefs

typedef struct rapidmix::runResults_t rapidmix::runResults
 A generic ouptut struct to fit all kinds of models. More...
 
typedef machineLearning< classification< double > > rapidmix::staticClassification
 static classification using KNN from RapidLib More...
 
typedef machineLearning< regression< double > > rapidmix::staticRegression
 static regression using Neural Networks from RapidLib More...
 
typedef machineLearning< seriesClassification< double > > rapidmix::dtwTemporalClassification
 temporal classification using Dynamic Time Warping from RapidLib More...
 
typedef xmmToolConfig rapidmix::xmmConfig
 configuration for XMM based algorithms More...
 
typedef machineLearning< rapidXmmGmmrapidmix::xmmStaticClassification
 static classification using Gaussian Mixture Models from XMM More...
 
typedef machineLearning< rapidXmmGmrrapidmix::xmmStaticRegression
 static regression using Gaussian Mixture Models from XMM More...
 
typedef machineLearning< rapidXmmHmmrapidmix::xmmTemporalClassification
 temporal classification using Hierarchical Hidden Markov Models from XMM More...
 
typedef machineLearning< rapidXmmHmrrapidmix::xmmTemporalRegression
 temporal regression using Hierarchical Hidden Markov Models from XMM More...
 
typedef machineLearning< rapidGVFrapidmix::gvfTemporalVariation
 temporal variation estimation using GVF library More...
 

Detailed Description

Author
Michael Zbyszynski on 10 Jan 2016